横向布置 EHA 对城际动车组曲线通过及磨耗的影响

祁亚运1, 2, 刘华1, 戴焕云3, 敖鹏1, 贺星1, 陈兆玮1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 134-143.

PDF(4046 KB)
PDF(4046 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 134-143.
交通运输科学

横向布置 EHA 对城际动车组曲线通过及磨耗的影响

  • 祁亚运*1,2,刘华1,戴焕云3,敖鹏1,贺星1,陈兆玮1
作者信息 +

Effects of transversely arranged EHA on curve passing and wear of intercity EMUs

  • QI Yayun*1,2, LIU Hua1, DAI Huanyun3, AO Peng1, HE Xing1, CHEN Zhaowei1
Author information +
文章历史 +

摘要

针对城际线路中广泛存在的小半径曲线导致的动车组曲线通过性能不足及轮轨严重磨耗问题,现以城际动车组为对象,在其轴箱与转向架布置横向作动器,形成主动径向转向架。该作动器能够驱使轮对横向移动,使得车辆沿纯滚动线运动。搭建了作动器系统模型,并采用分数阶PI(proportion integration)控制器验证了在负载突变干扰情况下,作动器对期望轨迹跟踪的快速性、准确性和稳定性。利用SIMPACK和MATLAB/Simulink软件,建立了主动径向城际动车组的动力学模型。通过分析轮对冲角、磨耗数、轮轨横向力和脱轨系数等动力学指标,评价了运行速度和曲线半径对车辆曲线通过性能的影响。此外,采用Jendel磨耗模型评估了车辆通过500米曲线半径时的轮轨磨耗性能。研究结果表明:将纯滚线距线路中心线的距离作为作动器的位移控制目标是合理的。当曲线半径为500米时,与传统被动控制相比,新型主动径向控制车辆的轮轨横向力最大值降低了12%,轮对冲角最大值减少了8%,脱轨系数下降了20%,车轮磨耗数最大值减少了12%。1位轮对外侧和内侧车轮磨耗深度分别降低了31%和12%,曲线外侧和内侧钢轨的磨耗深度分别减少了20%和15%。因此,该型主动径向转向架显著提升了车辆的曲线通过性能,并有效减少了轮轨磨耗。

Abstract

To address the issues of insufficient curve negotiation performance and severe wheel-rail wear caused by the prevalence of small-radius curves on intercity lines, this paper focuses on intercity electric multiple units (EMUs). An actuator was laterally installed between the axle box and bogie to form an active radial bogie. This actuator enables lateral movement of the wheelset, allowing the vehicle to follow a pure rolling line. A actuator system model was developed, and a fractional-order PI controller was employed to verify the actuator's rapidity, accuracy, and stability in tracking the desired trajectory under load disturbance conditions. Using the SIMPACK and MATLAB/Simulink software, a dynamic model of the active radial intercity EMUs was established. The study analyzed dynamic indexes such as wheelset yaw angle, wear number, lateral wheel-rail force, and derailment coefficient to evaluate the effect of operating speed and curve radius on the vehicle's curve negotiation performance. Additionally, the Jendel wear model was used to assess the wheel-rail wear performance when the vehicle passing a 500-meter curve radius. The results show that using the distance from the pure rolling line to the centerline of the track as the displacement control target for the actuator is reasonable. When passing the curved track with a radius of 500 meters, compared with traditional passive vehicles, the new type of active radial vehicle shows a 12% reduction in maximum lateral wheel-rail force, an 8% decrease in maximum wheelset coning angle, the derailment coefficient decreased by 20%, and the maximum wheel wear number decreased by 20%. The wear depth of the outer and inner wheels of the first wheelset was reduced by 31% and 12%, respectively, and the wear depth of the outer and inner rails of the curved track was reduced by 20% and 15%, respectively. Therefore, this type of active radial bogie significantly improves the vehicle's curve negotiation performance and effectively reduces wheel and rail wear.

关键词

城际动车组;电静液作动器;主动径向转向架;曲线通过性能;轮轨磨耗  /

Key words

intercity Electric Multiple Units / Electro-Hydrostatic Actuators / active radial bogie / curve passing / wheel-rail wear

引用本文

导出引用
祁亚运1, 2, 刘华1, 戴焕云3, 敖鹏1, 贺星1, 陈兆玮1. 横向布置 EHA 对城际动车组曲线通过及磨耗的影响[J]. 振动与冲击, 2025, 44(15): 134-143
QI Yayun1, 2, LIU Hua1, DAI Huanyun3, AO Peng1, HE Xing1, CHEN Zhaowei1. Effects of transversely arranged EHA on curve passing and wear of intercity EMUs[J]. Journal of Vibration and Shock, 2025, 44(15): 134-143

参考文献

[1] 李芾, 傅茂海, 黄运华. 车辆径向转向架发展及其动力学特性[J]. 交通运输工程学报, 2003, 3(1): 1-6.
Li Fu,Fu Maohai,Huang Yunhua. Development and dynamic characteristics of radial bogies[J]. Journal of Traffic and Transportation Engineering, 2003, 3(1): 1-6.
[2] 祁亚运, 戴焕云, 吴昊, 等. 高速动车组转向架蛇行状态下的车轮磨耗分析[J]. 振动与冲击, 2023, 42(7): 38-45.
Qi Yayun, Dai Huanyun, Wu Hao, et al. Wheel wear analysis of high-speed EMUs under bogie hunting[J]. Journal of Vibration and Shock, 42(7): 38-45.
[3] 祁亚运, 戴焕云, 干锋. 高速列车车轮型面多目标优化研究[J]. 机械工程学报, 2022, 58(24): 188-197.
QI Yayun, DAI Huanyun, GAN Feng. Optimization of wheel profiles for high-speed trains[J]. Journal of Mechanical Engineering, 2022, 58(24): 188-197.
[4] 毕鑫, 马卫华, 王少林, 等. 机车自导向径向转向架轮轨接触特性[J]. 交通运输工程学报, 2013, 13(5): 47-53.
Bi Xin, Ma Weihua, Wang Shaolin, et al. Wheel-rail contact features of self-steering radial bogie locomotive[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 47-53.
[5] Tian Shiqiao, Luo Xiangping, Xiao Chunyu, et al. Dynamic performance evaluation and optimization of steering rail vehicle based on sensitivity sequence[J]. Vehicle System Dynamics, 2022, 61(4): 992-1010. 
[6] Hur Hyunmoo, Shin Yujeong, Ahn Dahoon, et al. Steering performance evaluation of active steering bogie to reduce wheel wear on test line[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(9): 1591-1600.
[7] 田师峤, 罗湘萍, 任利惠, 等. 基于地铁车辆二系回转角的主动径向研究[J]. 机械工程学报, 2018, 54(24): 147-153.
Tian Shiqiao, Luo Xiangping, Ren Lihui, et al. Research on active radial of rail transit based on the yaw angle of second suspension[J]. Journal of Mechanical Engineering, 2018, 54(24): 147-153.
[8] 祁亚运, 戴焕云, 桑虎堂, 等. 基于曲线通过性能的地铁车辆动刚度转臂节点参数优化[J]. 振动与冲击, 2020, 41(20): 119-125.
Qi Yayun, Dai Huanyun, Sang Hutang, et al. Parameters optimization of positioning nodal point of a rotary arm with variable stiffness for metro vehicle based on curve passing performance[J]. Journal of Vibration and Shock, 2020, 41(20): 119-125. 
[9] Pradhan Smitirupa, Samantaray Arun Kumar, Singh Chandrajeet Pratap. Study of dynamic behavior of active steering railway vehicles[J]. Machines, Mechanism and Robotics, 2019: 441-452.
[10] Giossi Rocco Libero, Persson Rickard, Stichel Sebastian. Wheel wear reduction of a mechatronic two-axle vehicle controlled with feedforward wheelset steering approaches[J]. Vehicle System Dynamics, 2023, 62(4): 1037-1062.
[11] Fu Bin, Bruni Stefano. Fault-tolerant design and evaluation for a railway bogie active steering system[J]. Vehicle System Dynamics, 2020, 60(3): 810-834.
[12] Tian Shiqiao, Luo Xiangping, Xiao Chunyu, et al. Rail vehicle running safety and steering efficiency evaluation method based on equivalent curvature difference of active steering technology[J]. Vehicle System Dynamics, 2022, 61(5): 1189-1209. 
[13] 祁亚运, 戴焕云, 桑虎堂, 等. 高速动车组抗蛇行减振器参数优化研究[J]. 振动工程学报, 2023, 36(05): 1326-1334.
QI Yayun, DAI Huanyun, SANG Hutang, et al. Optimization study of anti-yaw damper parameters for high-speed EMUs. Journal of Vibration Engineering, 2023, 36(05): 1326-1334.
[14] 纪佳馨, 杨培杰, 张维家. 主动径向转向架动力学仿真级磨耗性能评价[J/OL]. 铁道科学与工程学报, 1-11[2024-03-25].
Ji Jiaxin, Yang Peijie, Zhang Weijia. Dynamic simulation and wear performance evaluation of active radial bogie[J/OL]. Journal of Railway Science and Engineering, 1-11[2024-03-25].
[15] Lu Zhenggang, Wei Juyao, Wang Zehan. Active steering controller for driven independently rotating wheelset vehicles based on deep reinforcement learning[J]. Processes, 2023, 11(9):1-15.
[16] Stichel Sebastian, Persson Rickard, Giossi Rocco. Improving rail vehicle dynamic performance with active suspension[J]. High-speed Railway, 2023, 1(1): 23-30.
[17] 毛冉成, 曾京, 石怀龙, 等. 基于主动抗蛇行减振器的高速转向架分岔控制与复杂运动分析 [J/OL]. 交通运输工程学报, 2024:1-13[2024-12-05].https://link.cnki.net/urlid/61.1369.U.20241205.1026.002.
[18] 石怀龙, 曾京. 基于二系横向主动悬挂的高速列车晃车控制[J/OL]. 机械工程学报, 1-11[2024-09-26].
Shi Huailong, Zeng Jing. Swaying control of high-speed EMVs using active lateral secondary suspension [J/OL]. Journal of Mechanical Engineering, 1-11[2024-09-26].
[19] 戚壮, 张文莲, 王美琪, 等. 分数阶PID扭矩控制在边驱耦合轻轨车辆的应用研究[J]. 自动化学报, 2020, 46(3): 482-494.
Qi Zhuang, Zhang Wenlian, Wang Meiqi, et al. Study for the application of fractional order PID torque control in side-drive coupled tram[J]. Acta Automatica Sinica, 2020, 46(3): 482-494.
[20] 李扬, 周洁敏. 电动静液作动器的建模与仿真[J]. 南昌航空大学学报, 2014, 28(3): 38-44.
Li Yang, Zhou Jiemin. Simulation of Electric-Hydrostatic Actuator Driven by Permanent Magnet Synchronous Motor[J]. Journal of Nanchang Hangkong University: Natural Sciences, 2014, 28(3): 38-44.
[21] 葛曜文, 朱威霖, 刘家辉, 等. 电静液作动器精细化建模和特性分析[J]. 机械工程学报, 2021, 57(24): 66-73.
Ge Yaowen, Zhu Weilin, Liu Jiahui, et al. Refined modeling and characteristic analysis of electro-hydrostatic actuator[J]. Journal of Mechanical Engineering, 2021, 57(24): 66-73.
[22] 申鹤松. 永磁同步电机调速系统鲁棒控制方法的研究[D]. 辽宁: 辽宁工程技术大学, 2019.
Shen Hesong. Research on robust control methods of permanent magnet synchronous motor speed regulation system[D]. Liaoning: Liaoning Technical University, 2019.
[23] 任禄. 基于分数阶滑膜的 EHA 位置控制实时仿真研究[D]. 兰州: 兰州理工大学, 2023.
Ren Lu. Real time simulation research on EHA position control based on fractional order sliding mode[D]. Lanzhou: Lanzhou University of Technology, 2023.
[24] 祁亚运, 戴焕云, 干锋, 等. 高速动车组车轮偏磨影响因素与限值研究[J]. 表面技术, 2023, 52(05): 51-60.
QI Yayun, DAI Huanyun, GAN Feng, et al. Study on influence factors and limit values of wheel off-wear of High-Speed EMU [J]. Surface Technology, 2023, 52(05): 51-60.
[25] 祁亚运, 李龙, 石怀龙, 等. 高寒动车组温变特性对运行性能的影响分析[J/OL]. 西南交通大学学报, 1-9[2025-02-07].
QI Yayun, Li Long, Shi Huailong, et al. Analysis of the influence of temperature change characteristics on the
operating performance of alpine high-speed EMUs[J/OL]. Journal of Southwest Jiaotong University, 1-9[2025-02-07].

PDF(4046 KB)

Accesses

Citation

Detail

段落导航
相关文章

/