严寒季冻区路基冻胀变形对车轮多边形磨耗演化影响研究

丁旺才1, 2, 张呈祎1, 吴少培1, 李得洋1, 高全福1, 李强1, 李国芳1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 153-162.

PDF(5830 KB)
PDF(5830 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 153-162.
交通运输科学

严寒季冻区路基冻胀变形对车轮多边形磨耗演化影响研究

  • 丁旺才1,2,张呈祎1,吴少培1,李得洋1,高全福1,李强1,李国芳*1
作者信息 +

Effects of subgrade frost heave deformation on wheel polygon wear evolution in seasonally severe cold areas

  • DING Wangcai1,2, ZHANG Chengyi1, WU Shaopei1, LI Deyang1, GAO Quanfu1, LI Qiang1, LI Guofang*1
Author information +
文章历史 +

摘要

为研究严寒地区高速铁路车轮多边形磨耗演化规律,首先以我国季冻区无砟轨道结构为研究对象建立考虑结构配筋的 CRTS III 型板式无砟轨道精细化非线性有限元分析模型,其次建立基于轮对、构架以及轨道柔性的车辆-轨道-路基耦合动力学模型,结合适用于计算车轮圆周长期磨耗演化的MATLAB预测模型,研究不同温度梯度下车轮多边形圆周磨耗演化规律,进一步分析严寒地区路基不均匀冻胀变形对车轮多边形圆周磨耗演化的影响。结果表明:在20℃~-40℃温度梯度范围内,严寒环境会加剧车轮多边形磨耗演化速率,磨耗后期车轮粗糙度水平及多边形幅值显著大于常温环境,波动幅度甚至超过两倍;路基冻胀幅值主要影响车轮多边形磨耗演化速率,幅值越大,演化速率越快,但对磨耗演化区域的影响较小;冻胀波长主要影响车轮磨耗量的累积位置,随着波长的增大,磨耗量会在车轮均匀叠加,波长越大,越趋于规则性磨耗,而冻胀波长对车轮磨耗速率影响甚微,研究结果可为严寒地区高速铁路车轮磨耗提供参考。

Abstract

In order to study the evolution law of wheel polygon wear of high-speed railway in severe cold area, a refined nonlinear finite element analysis model of CRTS III plate type ballastless track considering structural reinforced was established based on the ballastless track structure in seasonal freezing area of China, and then a vehicle-track-roadbed coupling dynamic model based on wheelset, frame and track flexibility was established. Combined with the MATLAB prediction model suitable for calculating the long-term wear evolution of wheel circumference, the evolution law of wheel polygon circumference wear under different temperature gradients was studied, and the influence of uneven frost heave deformation of roadbed on wheel polygon circumference wear evolution in cold regions was further analyzed. The results show that in the temperature gradient range of 20℃~-40℃, the evolution rate of wheel polygon wear will be accelerated in cold environment. The level of wheel roughness and the amplitude of polygon in the late wear period are significantly greater than that in normal temperature environment, and the fluctuation amplitude is even more than twice. The frost heave amplitude of roadbed mainly affects the wear evolution rate of wheel polygon. The larger the amplitude is, the faster the evolution rate is, but the influence on the wear evolution region is small. Frost heave wavelength mainly affects the accumulation position of wheel wear. With the increase of wavelength, the wear will be uniformly superimposed on the wheel, and the larger the wavelength, the more regular wear tends to be, while the frost heave wavelength has little effect on wheel wear rate. The research results can provide a reference for wheel wear in cold regions.

关键词

高速列车 / 车轮多边形 / 刚柔耦合 / 磨耗演化 / 路基冻胀变形

Key words

high-speed trains / wheel polygon / rigid and flexible coupling / long-term wear evolution / subgrade frost heave.

引用本文

导出引用
丁旺才1, 2, 张呈祎1, 吴少培1, 李得洋1, 高全福1, 李强1, 李国芳1. 严寒季冻区路基冻胀变形对车轮多边形磨耗演化影响研究[J]. 振动与冲击, 2025, 44(15): 153-162
DING Wangcai1, 2, ZHANG Chengyi1, WU Shaopei1, LI Deyang1, GAO Quanfu1, LI Qiang1, LI Guofang1. Effects of subgrade frost heave deformation on wheel polygon wear evolution in seasonally severe cold areas[J]. Journal of Vibration and Shock, 2025, 44(15): 153-162

参考文献

[1] 翟婉明.车辆-轨道耦合动力学[M].第4版.北京:科学出版社,2015.
ZHAI Wanming.Vehicle-track coupled dynamics.4thed. Beijing: Science Press, 2015.
[2] 毛冉成,曾京,石怀龙等.车轮多边形激励下高速转向架构架振动特性分析[J].铁道学报,2022,44(09):26-32.
MAO Rancheng, ZENG Jing, SHI Huailong, et al. Vibration characteristics analysis of high-speed bogie frame under wheel polygon excitation[J]. Journal of the China Railway Society, 2022, 44(09): 26-32.
[3] TAO G, WEN Z, LIANG X, et al. An investigation into the mechanism of the out-of-round wheels of metro train and its mitigation measures[J]. Vehicle System Dynamics. 2019;57(1):1-16.
[4] CAI W, CHI M, WU X, et al. Experimental and numerical analysis of the polygonal wear of high-speed trains[J]. Wear. 2019; 440-441:1-16.
[5] WANG Z, MEI G, et al. Influence of wheel-polygonal wear on the dynamic forces within the axle-box bearing of a high-speed train[J]. Vehicle System Dynamics. 2020.
[6] 朱海燕,胡华涛,尹必超,等.轨道车辆车轮多边形研究进展[J].交通运输工程学报,2020,20(01):102-119.
ZHU Haiyan, Hu Huatao, Yin Bichao, et al. Research progress of wheel polygon of rail vehicles [J]. Journal of Traffic and Transportation Engineering, 2019,20(01):102-119.
[7] 宋春元,崔利通,李国栋等.高速动车组悬挂参数优化研究[J].铁道学报,2021,43(04):42-50.
SONG Chunyuan, CUI Litong, LI Guodong et al. Research on Optimization of Suspension Parameters of high-speed EMUs [J]. Journal of the Railway Society,2021,43(04):42-50.
[8] 祁亚运,李龙,石怀龙等.高寒动车组温变特性对运行性能的影响分析[J/OL].西南交通大学学报,2023:1-9[2024-03-07].https://kns.cnki.net/kcms/detail/51.1277.U.20230511.1046.002.html.
[9] 陶功权,温泽峰,金学松.铁道车辆车轮非圆化磨耗形成机理及控制措施研究进展[J].机械工程学报,2021,57(06):106-120.
TAO Gongquan, Wen Zefeng, JIN Xuesong. Research Progress on Formation Mechanism and Control Measures of Non-circular Wear of Railway Vehicle Wheels [J]. Chinese Journal of Mechanical Engineering,2021,57(06):106-120.
[10] 李国芳,王红兵,吴少培,等.轮对两侧圆周相异轮廓对轮轨动态响应的影响[J].振动工程学报,2022,35(04):876-886.
LI Guofang, WANG Hongbing, WU Shaopei, et al. Influence of Different Circumferences on Wheel Rail Dynamic Response [J]. Journal of Vibration Engineering, 2022,35(04):876-886.
[11] 谢清林,陶功权,王鹏等.高寒动车组车轮磨耗演化特性及其影响分析[J].工程力学,2019,36(10): 229-237.
XIE Qinglin, TAO Gongquan, WANG Peng et al. Analysis of Wheel Wear Evolution Characteristics and Its Influence on High-Cold EMU [J]. Engineering Mechanics, 2019,36(10): 229-237.
[12] LI Guofang, WANG Hongbing , Z Yabo , et al.Research on the evolution of the wheel polygon based on the iterative model of long-term wear on both sides of the wheelset[J].Vehicle System Dynamics,2023,61(10):2570-2597.
[13] Lin J ,Xiongfei Z ,Kaiyun W .An elastic-plastic theoretical analysis model of wheel-rail rolling contact behaviour[J].Acta Mechanica Sinica,2023,39(8):
[14] 胡晓依,任海星,成棣,等.动车组车轮多边形磨耗形成与发展过程仿真研究[J].中国铁道科学,2021,42(02):107-115.
HU Xiaoyi, REN Haixing, CHENG Di, et al. Simulation Study on Formation and Development Process of Polygon Wear on EMU Wheels [J]. China Railway Science,2021,42(02):107-115.
[15] TAN Zhuang, GOU Hongye, LI Wenhao, et al. Effect of frost heave deformation of bridge foundation on operation safety of high-speed railway[J]. Structures, 2023, 47: 2099-2112.
[16] CAI Xiaopei, ZHANG Qian, WANG Qihao, et al. Effects of the subgrade differential arch on damage characteristics of CRTS III slab track and vehicle dynamic response[J]. Construction and Building Materials, 2022, 327: 126982.
[17] 马理超,吴少培,王健壹,等.季冻区无砟轨道损伤变形及其对车轨动力响应的影响研究[J].铁道科学与工程学报,2024,21(05):1828-1842.
MA Lichao, WU Shaopei, WANG Jianyi, et al. Research on damage deformation of ballastless track and its influence on Dynamic response of railway track in seasonal freezing Region [J]. Journal of Railway Science and Engineering, 2019,21(05):1828-1842.
[18] 李国芳,张向钰,高全福,等.路基不均匀沉降引起的轨道损伤变形及其对车轨动力响应的影响分析[J/OL].振动工程学报,1-12[2024-05-28].https://link.cnki.net/urlid/32.1349.TB.20240514.1238.004.
[19] 马晓川,王平,徐井芒,等.铁路道岔轮轨非赫兹滚动接触算法对比与分析[J].机械工程学报,2019,55(18): 95-103.
MA Xiaochuan, Wang Ping, Xu JM, et al. Comparison and Analysis of Non-Hertz Rolling Contact Algorithms for Wheel and Rail of Railway Turnout [J]. Chinese Journal of Mechanical Engineering,2019,55(18): 95-103.
[20] Piotrowski J , Kik W . A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations[J]. Vehicle System Dynamics, 2008, 46(1-2): 27-48.
[21] Sh. Sichani M, Enblom R, Berg M. A novel method to model wheel-rail normal contact in vehicle
dynamics simulation[J]. Vehicle System Dynamics,2014, 52(12):1752-1764.
[22] Lewis R, Dwyer-Joyce R S, Olofsson U, et al. Mapping railway wheel material wear mechanisms and transitions[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail & Rapid Transit. 2010; 224(f3): 125-137.
[23] GAO Liang , ZHAO Wenqiang , HOU Bowen , et al. Analysis of influencing mechanism of subgrade frost heave on vehicle-track dynamic System[J]. Applied Sciences, 2020, 10(22): 8097.
[24] 彭立群, 林达文, 王进, 黄涛, 等 动车组空气弹簧低温性能试验设计与研究[J]. 机车电传动, 2019(01):129-133.
PENG Liqun, LIN Dawen, WANG Jin, HUANG Tao, et al. Experimental Design and Research on Low Temperature Performance of EMU Air Spring [J]. Locomotive Electric transmission, 2019(01):129-133.
[25] 李杰. 基于 RCM 的 CRH5G 型高寒动车组维修策略研究[D]. 北京: 中国铁道科学研究院,2020.
LI Jie. Research on Maintenance strategy of CRH5G high-cold EMU based on RCM [D]. Beijing: China Academy of Railway Sciences,2020.
[26] 门见强. 高寒条件下高速动车组的动力学性能研究[D].成都: 西南交通大学, 2015.
MEN Jianqiang. Study on Dynamic Performance of high-speed EMU under High and cold conditions [D]. Chengdu: Southwest Jiaotong University, 2015.
[27] AI W, WU X, CHI M, et al. Wheel polygonisation growth due to multiple wheelsets/track coupling vibration. Vehicle Syst Dyn. 2022: 1–23. 
[28] 蔡吴斌. 基于车轨耦合振动的动车组车轮多边形产生机理及控制措施研究[D].西南交通大学,2021.
CAI Wubin. Research on wheel polygon generation Mechanism and Control Measures of EMU based on Vehicle-rail Coupling vibration [D]. Southwest Jiaotong University,2021.
[29] 王鹏,陶功权,杨晓璇,等.中国高速列车车轮多边形磨耗特征分析[J].西南交通大学学报,2021,1-9.
WANG Peng, Tao Gongquan, Yang Xiaoxuan, et al.Analysis of polygonal wear characteristics of chinese high-speed train wheels[J]. Journal of Southwest Jiaotong University,2021,1-9.

PDF(5830 KB)

Accesses

Citation

Detail

段落导航
相关文章

/