基于路面识别的最优车辆半主动悬架控制算法研究

房宁, 罗建南

振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 182-191.

PDF(2693 KB)
PDF(2693 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 182-191.
交通运输科学

基于路面识别的最优车辆半主动悬架控制算法研究

  • 房宁,罗建南*
作者信息 +

Optimal vehicle semi-active suspension control algorithm based on road surface identification

  • FANG Ning, LUO Jiannan*
Author information +
文章历史 +

摘要

考虑车辆在不同路面下行驶中的非线性因素(包括轮胎跳离地面、悬架撞击挡块和减振器系统时滞特性等),基于对不同阀控方式的减振器实测数据分析,建立了一个非线性车辆-悬架系统动力学模型。基于所设计的增广卡尔曼滤波器,并结合所选传感器的精度分析,研究了路面不平度的辨识算法,以有效判断当前路面及车速条件下的路面激励水平。设计了三种不同控制策略的电控半主动悬架,系统采用多目标粒子群算法分别对其最优控制电流进行了优化研究,并对各方案在不同路面激励水平下的控制效果进行了仿真分析。结果表明,三种控制方案与被动悬架相比均可提升车辆性能,而其中双阀控制的电控半主动悬架性能表现最佳,且对系统时滞具有更强的适应性。上述研究可为实用性车辆半主动悬架控制算法设计提供重要依据。

Abstract

Considering the nonlinear factors involved in vehicle dynamics on different road surfaces, including tire lift-off, suspension hitting bump stops, and the time-delay characteristics of suspension damper system, a nonlinear vehicle-suspension system dynamic model is established based on the measured data of different valve-controlled semi-active suspensions. By using a designed augmented Kalman filter and analyzing the accuracy of selected sensors, an identification algorithm for road surface irregularities is designed to effectively evaluate prevailing road with different roughness road and speed conditions. Three different control strategies for an electronically controlled semi-active suspension system are designed. The optimal control currents for each strategy are optimized by using a designed multi-objective particle swarm algorithm. And the control effects under various road excitation levels are analyzed based on simulation results. The results indicate that all three control schemes can improve vehicle performance compared to passive suspensions, in which the dual-valve electronically controlled semi-active suspension exhibits the best performance and better adaptability to the time delay of damper systems. The research can provide significant insights for the design of practical control algorithms for vehicle semi-active suspensions.

关键词

增广卡尔曼滤波 / 路面辨识方法 / 多目标粒子群算法 / 最优半主动悬架算法

Key words

augmented Kalman filter / road surface identification / multi-objective particle swarm optimization algorithm / optimal control of semi-active algorithm

引用本文

导出引用
房宁, 罗建南. 基于路面识别的最优车辆半主动悬架控制算法研究[J]. 振动与冲击, 2025, 44(15): 182-191
FANG Ning, LUO Jiannan. Optimal vehicle semi-active suspension control algorithm based on road surface identification[J]. Journal of Vibration and Shock, 2025, 44(15): 182-191

参考文献

[1] 殷珺,罗建南,喻凡. 汽车电磁式主动悬架技术综述[J]. 机械设计与研究,2020, 36(1): 161-168.
YIN Jun, LUO Jiannan, YU Fan. Overview of automobile electromagnetic active suspension technology[J]. Machine Design & Research, 2020, 36(1): 161-168.
[2] 喻凡,林逸. 汽车系统动力学[M]. 2版. 北京:机械工业出版社,2017.
[3] 雷先华,刘湘,刘栩婷. 新型减振器的研究现状及发展趋势[J]. 汽车实用技术,2020, 45(24): 236-239.
LEI Xianhua, LIU Xiang, LIU Xuting. Research status and development trend of new type shock absorber[J]. Automobile applied technology, 2020, 45(24): 236-239.
[4] 刘浪,张志飞,鲁红伟,等. 基于增广卡尔曼滤波并考虑车辆加速度的路面不平度识别[J]. 汽车工程,2022, 44(2): 247-255+297.
LIU Lang, ZHANG Zhifei, LU Hongwei, et al. Road roughness identification based on augmented Kalman filtering with consideration of vehicle acceleration[J]. Automotive Engineering, 2022, 44(2): 247-255+297.
[5] WANG R C, LIU W, DING R K, et al. Switching control of semi-active suspension based on road profile estimation[J]. Vehicle System Dynamics, 2021, 60(6): 1972-1992.
[6] MA X B, WONG P K, ZHAO J. Practical multi-objective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper[J]. Mechanical Sy-stems and Signal Processing, 2019, 117: 667-688.
[7] ZHU M F, LV G, ZHANG C P, et al. Delay-dependent sliding mode variable structure control of vehicle magnetorheological  semi-active suspension[J]. IEEE Access, 2022, 10: 51128-51141.
[8] ZHANG B Q, ZHAO H H, ZHANG X. Adaptive variable domain fuzzy PID control strategy based on road excitation for semi-active suspension using CDC shock absorber[J]. Journal of Vibration and Control, 2024, 30(3-4): 860-875.
[9] 李子先,潘世举,朱愿,等. 基于状态反馈和预瞄前馈的智能车半主动悬架控制[J]. 汽车工程,2023, 45(5): 735-745.
LI Zixian, PAN Shiju, ZHU Yuan, et al. Semi-active suspension control for intelligent vehicles based on state feedback and preview feedforward[J]. Automotive Eng-ineering, 2023, 45(5): 735-745.
[10] 秦雪梅. 一种双阀控制式半主动减振器[P]. 中国专利,发明公开,CN202311059578.X. 2023.
[11] 黄震. 用于电控减振器的可调控制阀及电控减振器[P]. 中国专利,发明公开,CN202211028083.6. 2022.
[12] 李靖玮,罗建南,黄震. 考虑CDC系统时滞的半主动悬架控制器设计研究[J]. 汽车工程,2024, 46(05): 913-922.
LI Jingwei, LUO Jiannan, HUANG Zhen. Study on a semi-active suspension controller considering time delay of CDC system. Automotive Engineering, 2024, 46(05): 913-922.
[13] 秦永元,张洪钺,汪叔华. 卡尔曼滤波与组合导航原理[M]. 1版. 陕西:西北工业大学出版社,1998.
[14] FAURIAT W, MATTRAND C, GAYTON N, et al. Estimation of road profile variability from measured vehicle responses[J]. Vehicle System Dynamic, 2016, 54(5): 585-605.
[15] LI F, LIU J C, SHI HT, et al. Multi-objective particle swarm optimization algorithm based on decomposition and differential evolution[J]. Journal of Control and Decision, 2017, 32(3):403.
[16] 范政武,王铁,王永红,等. 基于改进多目标粒子群算法的商用车悬架系统优化[J]. 振动与冲击,2018, 37(15): 216-224.
FAN Zhengwu, WANG Tie, WANG Yonghong, et al. Commerical vehicle suspension systerm optimization based on improved multi-objective particle swarm algorithm[J]. Journal of Vibration and Shock, 2018, 37(15): 216-224.

PDF(2693 KB)

Accesses

Citation

Detail

段落导航
相关文章

/