基于SPH-DEM-FEM方法的高位滑坡冲击框架建筑群损毁机制研究

樊晓一1, 2, 邓鑫1, 刘欢1, 3, 4, 夏贵平3, 宋嘉麒1, 杨居颐1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 235-248.

PDF(6424 KB)
PDF(6424 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 235-248.
冲击与爆炸

基于SPH-DEM-FEM方法的高位滑坡冲击框架建筑群损毁机制研究

  • 樊晓一*1,2,邓鑫1,刘欢1,3,4,夏贵平3,宋嘉麒1,杨居颐1
作者信息 +

Destroy mechanism of high-level landslide impact frame building complex based on SPH-DEM-FEM method

  • FAN Xiaoyi*1,2, DENG Xin1, LIU Huan1,3,4, XIA Guiping3, SONG Jiaqi1, YANG Juyi1
Author information +
文章历史 +

摘要

高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,本文基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics -discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框架结构建筑群的冲击过程、建筑结构破坏机理、冲击力时程与框架柱关键点应力和弯矩等动力机制研究。研究结果表明:SPH-DEM-FEM耦合数值方法能够有效地模拟碎石土滑坡中土(SPH)石(DEM)混合物的抛射弹跳、爬高绕流冲击运动过程。考虑了常规建筑垂直、平行于滑坡流向的三排建筑组合布局,位于滑坡近端的纵向排列建筑表现为连续性倾倒破坏,横向排列的建筑则呈现整体倾倒破坏;因前排建筑群对滑坡冲击能量的耗散及滑坡自身摩擦耗能,位于滑坡后端建筑表现为引流面墙体和前排柱发生局部破坏,结构保持稳定,损毁程度依次为上游无建筑缓冲耗能的建筑>有横向排列的建筑>有纵向排列的建筑;纵向、横向排列的建筑冲击力衰减幅度分别31%、21%。横向框架建筑整体倾倒的损毁机制表现为框架柱的直接剪断或节点塑形铰链失效;纵向框架建筑连续性倾倒的损毁机制表现为前排框架柱的失效引起后排框架柱轴向压力和极限弯矩增加,持续冲击荷载超过其极限弯矩致使后排框架柱发生弯曲破坏,最终结构倾倒。系统能量在动能、内能和摩擦耗能间转化,其中摩擦耗能占65.5%,结构耗能占23.6%,动能快速下降与内能急剧增加是建筑破坏的关键特征。 

Abstract

The impact of high-level landslide on building clusters often leads to serious casualties. Based on the numerical model of smooth particle hydrodynamics-discrete element method-finite element method (SPH-DEM-FEM) coupling, this paper studies the impact process, the failure mechanism of building structures, the time history of impact force and the stress and bending moment at the key points of frame columns of high-level landslide on frame structure buildings. The results show as follows:SPH-DEM-FEM coupling numerical method can effectively simulate the projectile bounce and climb of the rock (DEM) mixture in the gravel soil landslide (SPH). Considering the combination layout of three rows of regular buildings perpendicular to and parallel to the landslide flow direction, the longitudinally arranged buildings at the near end of the landslide show continuous dumping damage, while the horizontally arranged buildings show overall dumping damage. Due to the dissipation of impact energy from the front row buildings on the landslide and the friction energy consumption of the landslide itself, the building at the back end of the landslide shows local damage to the wall and front row columns on the drainage surface, and the structure remains stable, the damage degree is in the order of buildings without energy consumption in the upstream, horizontal arrangement and vertical arrangement in turn. The impact attenuation amplitude of buildings arranged vertically and horizontally is 31% and 21% respectively. The damage mechanism of the overall toppling of the transverse frame building is the direct shearing of the frame column or the failure of the node plastic hinge. The damage mechanism of the continuous toppling of the longitudinal frame building is that the failure of the front frame column causes the axial pressure and limit bending moment of the rear frame column to increase, and the continuous impact load exceeds its limit bending moment, resulting in the bending failure of the rear frame column and the final structural toppling.The system energy is converted between kinetic energy, internal energy and friction energy, of which friction energy accounts for 65.5% and structural energy accounts for 23.6%. The rapid decline of kinetic energy and sharp increase of internal energy are the key characteristics of building failure.

关键词

光滑粒子流体动力学-离散元法-有限元法- (SPH-DEM-FEM) / 高位滑坡 / 框架结构建筑群 / 损毁机制 / 动力机制

Key words

smoothed particle hydrodynamics -discrete element method-finite element method (SPH-DEM-FEM) / high- elevation landslide / framed building cluster / damage mechanism / dynamic mechanism

引用本文

导出引用
樊晓一1, 2, 邓鑫1, 刘欢1, 3, 4, 夏贵平3, 宋嘉麒1, 杨居颐1. 基于SPH-DEM-FEM方法的高位滑坡冲击框架建筑群损毁机制研究[J]. 振动与冲击, 2025, 44(15): 235-248
FAN Xiaoyi1, 2, DENG Xin1, LIU Huan1, 3, 4, XIA Guiping3, SONG Jiaqi1, YANG Juyi1. Destroy mechanism of high-level landslide impact frame building complex based on SPH-DEM-FEM method[J]. Journal of Vibration and Shock, 2025, 44(15): 235-248

参考文献

[1] 于虹,李昊,许标,等. 基于SPH-FEM耦合方法的泥石流冲击输电塔基础的动力分析 [J]. 防灾减灾工程学报, 2024, 44 (01): 68-78.
YU Hong, LI Hao, XU Biao, et al. Dynamic response of transmission tower foundation impacted by debris flow using coupled SPH-FEM method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44 (01): 68-78.
[2] Yang H Q,Cheng J F. Experimental investigation on the interaction between the rapid sliding body and exposed element[J]. Environmental Earth Sciences, 2017, 76(6): 258.
[3] Chen Q, Chen L X, Gui L, et al. Assessment of the physical vulnerability of buildings affected by slow-moving landslides[J]. Natural hazards and earth system sciences, 2020, 20(9): 2547-2565.
[4] Hu K H, Cui P, Zhang J Q. Characteristics of damage to buildings by debris flows on 7 August 2010 in Zhouqu, Western China[J]. Natural Hazards and Earth System Sciences, 2012, 12(7): 2209-2217.
[5] 刘欢,樊晓一,姜元俊,等. 含大石块泥石流冲击作用下框架结构房屋动力响应研究 [J]. 振动与冲击, 2024, 43 (01): 9-19.
.LIU Huan, FAN Xiaoyi, JIANG Yuanjun, et al. Dynamic response of frame structure building umder impact of debris flow with large stones[J]. Journal of vibration and shock, 2024, 43 (01): 9-19.
[6] Luo H Y, Shen P, Zhang L M. How does a cluster of buildings affect landslide mobility: a case study of the Shenzhen landslide[J]. Landslides, 2019, 16: 2421-2431.
[7] Luo H Y, Zhang L M, Wang H J, et al. Process of building collapse caused by the Po Shan Road landslide in Hong Kong on 18 June 1972[J]. Landslides, 2021, 18: 3769-3780.
[8] Luo H Y, Zhang L L, Zhang L M. Progressive failure of buildings under landslide impact[J]. Landslides, 2019, 16(7): 1327-1340.
[9] 程选生,张爱军,任毅,等. 泥石流作用下砌体结构的破坏机理和防倒塌措施 [J]. 工程力学, 2015, 32 (08): 156-163.
CHENG Xuansheng,ZHANG Aijun,REN Yi, et al. Failure mechanism and anti-collapse measures of masonry structure under the action of debris flow[J].Engineering Mechanics, 2015, 32 (08): 156-163.
[10] 李培振,李进,李唐振昊. 泥石流冲击作用下砌体结构破坏机理研究[J].华中科技大学学报(自然科学版),2017,  45  (07):  1-5.
LI Peizhen,LI Jin,LI Tangzhenhao.The failure mechanism of masonry structure under debris flow impact[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2017,  45  (7):  1-5.
[11] Li P Z, Li T Z H, Lu Z, e al. Study on dynamic response of novel masonry structures impacted by debris flow[J]. Sustainability, 2017, 9(7): 1-22.
[12] 狄生奎,李健,张得强. 泥石流冲击作用下框架结构的破坏机理 [J]. 山地学报, 2012,30 (02): 201-206.
DI Shengkui LI Jian, ZHANG Deqiang. Damege mechanism of frame structures impacted by debris flow[J]. Journal of Mountain Science, 2012, 30(2): 201-206.
[13] Liu C, Yu Z X, Zhao S C. A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation[J]. Landslides, 2021, 18(7): 2403-2425. 
[14] 李百隆. 基于SPH-DEM-FEM耦合的泥石流冲击力与拦挡结构的动力响应研究[D]. 吉林大学, 2022.
LI Bailong. A Study on Impact Force and Dynamic Response ofDebris Flow Retaining Structure Based on SPH-DEM-FEMCoupling[D].Jilin;Jilin University,2022.
[15] Hallquist J O. LS-DYNA theory manual[J]. Livermore software Technology corporation, 2006, 3: 25-31.
[16] 张维顺.云南省镇雄县赵家沟高速远程堆积层滑坡形成机制研究[D]. 成都理工大学, 2014.
ZHANG Weishun. Research on the formation mechanism of Zhaojiagou town high-speed remote accumulation landslide in Zhenxiong,Yunnan [D].Chengdu University of Technologu, 2014.
[17] 殷跃平,刘传正,陈红旗,等. 2013年1月11日云南镇雄赵家沟特大滑坡灾害研究 [J]. 工程地质学报,2013, 21 (01): 6-15.
YIN Yueping, LIU Chuanzheng, CHEN Hongqi, et al. Investigation on catastrophic landslide of January 11,2013 at Zhaojiagou,Zhenxiong county,Yunnan Province[J]. Journal of engineering geology, 2013, 21 (01): 6-15.
[18] 康瀚. 云南镇雄县赵家沟滑坡成因机理研究[D]. 成都理工大学, 2014.
KANG Han Study on formation mechanism of Zhaojiagou landslide in Zhenxiong county of Yunnan province[D]. Chengdu:Chengdu University of Technologu, 2014.
[19] Kwan J S H, Koo R C H, Ng C W W. Landslide mobility analysis for design of multiple debris-resisting barriers[J]. Canadian Geotechnical Journal, 2015, 52(9): 1345-1359.
[20] Koo R C H, Kwan J S H, Lam C, et al. Back-analysis of geophysical flows using three-dimensional runout model[J]. Canadian Geotechnical Journal, 2018, 55(8): 1081-1094.
[21] Deng J, Gao N, Chen X, et al. Evanescent waves in a metabeam attached with lossy acoustic black hole pillars[J]. Mechanical Systems and Signal Processing, 2023, 191: 110182.
[22] 文兴. 云南赵家沟滑坡启动机制与碎屑流运动特征研究[D]. 成都理工大学, 2014.
WEN Xing. Investigation on start mechanism of landslide and debris flow movement characteristics at Zhaojiagou, Zhenxiong county, [D]. Chengdu:Chengdu University of Technologu, 2014.
[23] 张维. 持时小雨诱发云南镇雄赵家沟高速远程滑坡机理研究[D]. 上海交通大学, 2017.
ZHANG Wei. Study on mechanism of high-speed and long run-out landslide inducedby prolonged low-intensity rainfall in Zhaojiagou, Zhenxiong, Yunnan[D]. Shanghai:Shanghai Jiao Tong University, 2017.
[24] Xing L, Wang G Z, Gong W P, et al. Model tests of the failure behaviors of buildings under the impact of granular flow[J]. Landslides, 2024: 1-20.
[25] 陈勇,姚昌荣,周迅,等. 基于DEM-FEM耦合方法的碎屑流对桥墩最大冲击力的影响因素研究 [J]. 自然灾害学报, 2024, 33 (02): 65-74.
CHEN Yong,YAO Changrong,ZHOU Xun,et al. Influential factors of the maximum impact force of rock avalanche flow on bridge piers using DEM-FEM coupled method [J]. Journal of Natural Disasters, 2024, 33 (02): 65-74.
[26] 张睿骁,樊晓一,姜元俊,等. 滑坡-碎屑流冲击导引结构的离散元模拟 [J]. 水文地质工程地质, 2019, 46 (05): 161-168.
ZHANG Ruixiao,FAN Xiaoyi,JIANG Yuanjun, et al. Discrete element simulation of the landslide-debris flow impact guiding structure[J]. Hydrogeology & Engineering Geology, 2019, 46 (05): 161-168.
[27] 许强,董秀军,邓茂林,等. 2010年7•27四川汉源二蛮山滑坡-碎屑流特征与成因机理研究 [J]. 工程地质学报, 2010, 18 (05): 609-622.
XU Qiang,DONG Xiujun,DENG Maolin .et al. The Ermanshan rock slide-debris flow of junly 27, 2010 in Hanyuan, Sichuan:characteristics and failure mechanism[J]. Journal of Engineering Geology, 2010, 18 (05): 609-622.
[28] 雷雨,崔鹏,蒋先刚. 泥石流作用下砌体房屋破坏机理与结构优化 [J]. 四川大学学报(工程科学版), 2016, 48 (04): 61-69.
LEI Yu,CUI Peng,JIANG Xiangang. Failure Mechanism and Structure Optimization of Masonry Building Due to Debris Flow Impact[J]. Advanced Engineering Sciences, 2016, 48 (04): 61-69.

PDF(6424 KB)

Accesses

Citation

Detail

段落导航
相关文章

/