低速冲击作用下混凝土板的耗能特性研究

颜佳伟, 古松, 孔超

振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 280-288.

PDF(2777 KB)
PDF(2777 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 280-288.
冲击与爆炸

低速冲击作用下混凝土板的耗能特性研究

  • 颜佳伟,古松*,孔超
作者信息 +

Energy dissipation characteristics of concrete slabs under low-speed impact

  • YAN Jiawei, GU Song*, KONG Chao
Author information +
文章历史 +

摘要

为了研究混凝土板在低速冲击作用下能量耗散特性,利用落锤实验装置对14块素混凝土板进行试验,采用混凝土连续面盖帽本构模型(continuous surface cap model,CSCM)结合非线性显示动力分析软件LS-DYNA对冲击过程进行了数值模拟,并通过能量守恒定律求得试件在冲击过程中能量变化情况,分析了不同混凝土强度、落锤冲击速度和混凝土板厚度对混凝土板耗能特性及其破坏效应的影响。结果表明:冲击力随着落锤冲击速度的增大而增大,且在冲击过程中板的动态变化表现为弹性阶段、塑性阶段和完全破坏阶段;混凝土板的下挠幅度随着冲击速度的增大而增大,呈现较好的抛物线关系;当冲击速度越大,对结构有更强的侵彻效应,主要表现为撞击混凝土的侵入深度,混凝土板断裂过程中产生的碎块动能以及落锤剩余的动能消耗了更多能量,则作用于裂缝拓展的能量就越少。该研究可为桥面板和路面防止低速冲击作用提供参考,以供落石灾害防护工程设计所需。

Abstract

In order to investigate the energy dissipation characteristics of concrete slabs under low-velocity impact, 14 groups of plain concrete slabs were tested by using a drop hammer test device. The impact process of each group was numerically simulated by using the Continuous Surface Cap Model (CSCM) combined with the nonlinear display dynamic analysis software LS-DYNA. The energy change of the specimen during the impact process was found through the law of conservation of energy. The effects of different concrete strengths, impact velocities and concrete slab thicknesses on the energy dissipation characteristics of concrete slabs and their destructive effects were analysed. The results show that the impact force increases with the increase of the impact velocity of the drop hammer. The dynamic change process of the concrete slab during the low-velocity impact is mainly divided into the elastic stage, the plastic stage and the complete destruction stage. The downward deflection of the concrete slab increases with increasing impact velocity, showing a better parabolic relationship. When the impact velocity is higher, it will show a stronger erosion effect. The more energy consumed by the kinetic energy of the concrete fragments and the kinetic energy of the drop hammer during the fracture process, the less energy is applied to the crack expansion. This study can provide a reference for bridge deck slabs and pavements to prevent low-velocity impact effects for the design of rockfall hazard protection projects.

关键词

低速 / 冲击试验 / 能量耗散 / 破坏效应 / 破断能

Key words

low-speed / impact test / energy dissipation / damage effect / break energy

引用本文

导出引用
颜佳伟, 古松, 孔超. 低速冲击作用下混凝土板的耗能特性研究[J]. 振动与冲击, 2025, 44(15): 280-288
YAN Jiawei, GU Song, KONG Chao. Energy dissipation characteristics of concrete slabs under low-speed impact[J]. Journal of Vibration and Shock, 2025, 44(15): 280-288

参考文献

[1] 古松,彭丰,余志祥,等. 低速冲击作用下混凝土板破坏效应试验研究[J]. 振动与冲击,2019, 38(24): 107-114.
GU Song, PENG Feng, YU Zhixiang, et al. An experimental study on the damage effects of the concrete slabs under low-velocity impact [J]. Journal of Vibration and Shock, 2019, 38(24): 107-114.
[2] Peng F, Gu S, Li T B. et al. Experimental and Theoretical Study of Rockfall Impacts on Concrete Slab under Low-velocity Impact [J]. KSCE Journal of Civil Engineering, 2022, 26(11): 4653–4663.
[3] 孟一. 冲击荷载作用下钢筋混凝土梁的试验及数值模拟研究[D]. 长沙: 湖南大学, 2012.
[4] Xiao Y, Li B, Fujikake K. Behavior of Reinforced Concrete Slabs under Low-Velocity Impact [J]. ACl Structural Journal, 2017, 114(3), 643-658.
[5] 王爽. 高陡边坡落石作用对隧道棚洞的动力响应及抗冲击研究[D]. 成都: 西南交通大学, 2015.
[6] 顾乡,余志祥,赵雷,等. 落石冲击能量对山区桥梁损伤的影响[J]. 西南交通大学学报, 2016, 51(06): 1131-1137. 
GU Xiang, YU Zhixiang, ZHAO Lei, et al. Influence of Rockfall Impact Energy on Mountain Bridge Damage [J]. Journal of Southwest Jiaotong University, 2016, 51(06): 1131-1137.
[7] 赵嘉琛,古松,任松波,等. 低速冲击下混凝土板的能量耗散研究[J]. 振动与冲击, 2023, 42(23): 300-306. 
ZHAO Jiachen, GU Song, REN Songbo, et al. Energy dissipation of concrete slabs under low-speed impact [J]. Journal of Vibration and Shock, 2023, 42(23): 300-306.
[8] 李金星. 落石低速冲击混凝土板破坏效应研究[D]. 绵阳: 西南科技大学, 2017.
[9] 党发宁,李玉涛,任劼,等. 混凝土冲击破坏动态力学及能量特性分析[J]. 爆炸与冲击, 2022, 42(08): 63-76. 
DANG Faning, LI Yutao, REN Jie, et al. Analysis of dynamic mechanics and energy characteristics of concrete impact failure [J]. Explosion and Shock Waves, 2022, 42(08): 63-76.
[10] 初旭东. 多边形厚板塑性极限状态的研究[D]. 阜新: 辽宁工程技术大学, 2013.
[11] 李玉涛,党发宁,任劼,等. 混凝土冲击破坏动力特性及能耗规律研究[J]. 水力发电学报, 2022, 41(09): 139-149.
LI Yutao, DANG Faning, REN Jie, et al. Dynamic characteristics and energy consumption laws of concrete impact failure [J]. Journal of Hydroelectric Engineering, 2022, 41(09): 139-149.
[12] 纪杰杰,李洪涛,吴发名,等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击, 2020, 39(13): 176-183. 
JI Jiejie, LI Hongtao, WU Faming, et al. Fractal characteristics of rock fragmentation under impact load [J]. Journal of Vibration and Shock, 2020, 39(13): 176-183.
[13] Zhang Z X, Kou S Q, Jiang L G, et al. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 745-762.
[14] 翟越,马国伟,赵均海,等. 花岗岩和混凝土在单轴冲击压缩荷载下的动态性能比较[J]. 岩石力学与工程学报, 2007, 26 (04): 762-768. 
ZHAI Yue, MA Guowei, ZHAO Junhai, et al. Comparison of dynamic capabilities of granite and concrete under uniaxial impact compressive loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (04): 762-768.
[15] 甘德清,刘志义,李占金,等. 冲击载荷作用下磁铁矿石破碎能耗特征[J]. 岩石力学与工程学报, 2018, 37(S1): 3500-3506.
GAN Deqing, LIU Zhiyi, LI Zhanjin, et al. Broken energy dissipation characteristics of magnetite under impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3500-3506.
[16] 巫绪涛,廖礼. 脆性材料中应力波衰减规律与层裂实验设计的数值模拟[J]. 爆炸与冲击, 2017, 37(04): 705-711.
WU Xutao, LIAO Li. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design [J]. Explosion and Shock Waves, 2017, 37(04): 705-711.
[17] 付应乾,董新龙. 落锤冲击下钢筋混凝土梁响应及破坏的实验研究[J]. 中国科学:技术科学, 2016, 46(04): 400-406.
FU Yingqian, DONG Xinlong. An experimental study on impact response and failure behavior of reinforced concrete beam [J]. Scientia Sinica(Technologica), 2016, 46(04): 400-406.
[18] 易伟建,史先达. 钢筋混凝土剪力墙在冲击荷载作用下的数值模拟分析[J]. 振动与冲击, 2019, 38(13): 102-110. 
YI Weijian, SHI Xianda. Numerical simulation analysis for RC shear walls under impact load [J]. Journal of Vibration and Shock, 2019, 38(13): 102-110.
[19] KISHI N, MIKAMI H. Empirical formulas for designing reinforced concrete beams under impact loading [J]. ACI Structural Journal, 2012, 109(4): 509-520.

PDF(2777 KB)

127

Accesses

0

Citation

Detail

段落导航
相关文章

/