考虑扰流装置的大跨柔性光伏阵列最大风推荷载及降载机理研究

赵宏博1, 2, 柯世堂1, 2, 李灏1, 2, 张春伟1, 2, 王文才1, 2, 秦岩1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 50-59.

PDF(5361 KB)
PDF(5361 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 50-59.
振动理论与交叉研究

考虑扰流装置的大跨柔性光伏阵列最大风推荷载及降载机理研究

  • 赵宏博1,2,柯世堂*1,2,李灏1,2,张春伟1,2,王文才1,2,秦岩1,2
作者信息 +

Maximum wind thrust load and load reduction mechanism of long-span flexible photovoltaic arrays considering spoiler devices

  • ZHAO Hongbo1,2, KE Shitang*1,2, LI Hao1,2, ZHANG Chunwei1,2, WANG Wencai1,2, QIN Yan1,2
Author information +
文章历史 +

摘要

大跨柔性光伏阵列在0°来流风向角下遭受的推力最大,此时极易发生结构强度破坏,现行规范仅规定了柔性光伏支架风荷载的取值准则,缺乏针对风荷载降载措施的系统研究。为进一步提高大跨柔性光伏阵列的抗风性能,本文创新性地设计并制作了>型、<型、Γ型和L型四种来流扰流装置,开展了考虑/不考虑扰流装置的五种大跨柔性光伏阵列上下表面同步测压风洞试验,对比分析了不同扰流装置对光伏阵列平均、脉动和极值风荷载及扭矩力的影响,使用主成分分析法评价了四种扰流装置的降载性能,结合CFD(computational fluid dynamics)数值方法探究了扰流装置的降载机理。结果表明:四种扰流装置均显著降低了0°最大推力下光伏阵列的平均风压系数、极值正压系数和扭矩系数,但对光伏阵列的脉动风压系数和极值负压系数影响微弱;四种扰流装置降载性能由强到弱依次为>型、<型、Γ型和L型,相应降载性能评价指标为4.133、4.022、2.388和1.746;来流在扰流装置处分离产生的连续低压区域和涡脱再附产生的局部低压区域分别是首排和后排光伏板大幅降载的主导因素。

Abstract

Large-span flexible photovoltaic arrays are highly susceptible to structural failure under maximum thrust at a 0° wind direction. Current standards primarily focus on wind load calculations for flexible photovoltaic supports but lack comprehensive research on wind load reduction strategies. To enhance the wind resistance of these arrays, this study innovatively designs and tests four types of flow disturbance devices: >, <, Γ, and L types. Wind tunnel experiments with synchronized pressure measurements on both the upper and lower surfaces of the arrays were conducted, considering and not considering the disturbance devices. The study analyzed their effects on average, fluctuating, and extreme wind loads, as well as on torque. Principal component analysis (PCA) was employed to assess load reduction performance, and CFD simulations were used to explore the underlying mechanisms. The results indicate that all four disturbance devices significantly reduced the average wind pressure coefficient, extreme positive pressure coefficient, and torque coefficient at maximum thrust under a 0° wind direction, with minimal effects on fluctuating wind pressure and extreme negative pressure coefficients. The load reduction performance of the devices ranked as follows: >, <, Γ, and L types, with performance indices of 4.133, 4.022, 2.388, and 1.746, respectively. The continuous low-pressure region formed by the separation of incoming flow at the disturbance devices and the local low-pressure region resulting from vortex reattachment are the dominant factors leading to substantial load reduction on the first and rear rows of photovoltaic panels, respectively.

关键词

大跨柔性光伏阵列 / 扰流装置 / 0°来流 / 风荷载分布 / 降载机理

Key words

large-span flexible photovoltaic array / Spoiler / 0° maximum thrust / Wind load distribution / Principal component analysis / Load reduction mechanism

引用本文

导出引用
赵宏博1, 2, 柯世堂1, 2, 李灏1, 2, 张春伟1, 2, 王文才1, 2, 秦岩1, 2. 考虑扰流装置的大跨柔性光伏阵列最大风推荷载及降载机理研究[J]. 振动与冲击, 2025, 44(15): 50-59
ZHAO Hongbo1, 2, KE Shitang1, 2, LI Hao1, 2, ZHANG Chunwei1, 2, WANG Wencai1, 2, QIN Yan1, 2. Maximum wind thrust load and load reduction mechanism of long-span flexible photovoltaic arrays considering spoiler devices[J]. Journal of Vibration and Shock, 2025, 44(15): 50-59

参考文献

[1] 徐海巍, 李俊龙, 何旭辉, 等. 大跨度单层柔性光伏支架结构气动阻尼的试验研究[J]. 振动与冲击, 2024, 43(10): 21-29.
XU Haiwei, LI Junlong, HE Xuhui, DU Hang, DING Kunyang, LOU Wenjuan. Aero-elastic experiment investigation on the aerodynamic damping of large-span single-layer cable-suspended photovoltaic modules[J]. Journal of Vibration and Shock, 2024, 43(10): 21-29.
[2] Hu B, Zhou P, Zhang L P. A digital business model for accelerating distributed renewable energy expansion in rural China[J]. Applied Energy, 2022, 316: 119084.
[3] 光伏发电站设计规范: GB 50797-2012[S]. 北京: 中国计划出版社, 2012.
[4] 光伏支架结构设计规程: NB/T 10115-2018[S]. 北京: 中国计划出版社, 2018.
[5] Li J Y, Tong L W, Wu J M, et al. Numerical investigation of wind pressure coefficients for photovoltaic arrays mounted on building roofs[J]. KSCE Journal of Civil Engineering, 2019, 23: 3606-3615.
[6] Zhang W, Zhao Y, Huang F, et al. Forecasting the energy and economic benefits of photovoltaic technology in China’s rural areas[J]. Sustainability, 2021, 13(15): 8408.
[7] Pantua C A J, Calautit J K, Wu Y P. Sustainability and structural resilience of building integrated photovoltaics subjected to typhoon strength winds[J]. Applied Energy, 2021, 301: 117437.
[8] Estephan J, Chowdhury A G, Irwin P. A new experimental-numerical approach to estimate peak wind loads on roof-mounted photovoltaic systems by incorporating inflow turbulence and dynamic effects[J]. Engineering Structures, 2022, 252: 113739.
[9] 马文勇, 孙高健, 刘小兵, 等. 太阳能光伏板风荷载分布模型试验研究[J]. 振动与冲击, 2017, 36(7): 8-13.
MA Wenyong, SUN Gaojian, LIU Xiaobing, XING Keyong, LIU Qingkuan. Tests for wind load distribution model of solar panels[J].Journal of Vibration and Shock, 2017, 36(7): 8-13.
[10] Choi S M, Park C D, Cho S H, et al. Effects of wind loads on the solar panel array of a floating photovoltaic system–Experimental study and economic analysis[J]. Energy, 2022, 256: 124649.
[11] Choi S M, Park C D, Cho S H, et al. Effects of various inlet angle of wind and wave loads on floating photovoltaic system considering stress distributions[J]. Journal of Cleaner Production, 2023, 387: 135876.
[12] Li W, Ke S, Cai Z, et al. Instability mechanism and failure criteria of large-span flexible PV support arrays under severe wind[J]. Solar Energy, 2023, 264: 112000.
[13] Chen F, Zhu Y, Wang W, et al. A Review on Aerodynamic Characteristics and Wind-Induced Response of Flexible Support Photovoltaic System[J]. Atmosphere, 2023, 14(4): 731.
[14] 杨群, 于畅, 于文文, 等. 圆角方柱气动特性的风洞试验研究[J]. 振动与冲击, 2023, 42(24): 59-68.
Yang Qun, Yu Chang, Yu Wenwen, et al. Wind tunnel test study on aerodynamic characteristics of square cylinders with rounded corners[J]. Journal of Vibration and shock, 2023, 42(24): 59-68.
[15] 杜航, 徐海巍, 张跃龙, 等. 大跨柔性光伏支架结构风压特性及风振响应[J]. 哈尔滨工业大学学报, 2022, 54(10): 67-74.
DU Hang, XU Haiwei, ZHANG Yuelong, LOU Wenjuan. Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure[J]. Journal of Harbin Institute of Technology,2022,54(10):67.
[16] He X H, Ding H, Jing H Q, et al. Wind-induced vibration and its suppression of photovoltaic modules supported by suspension cables[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104275.
[17] Nan B, Chi Y, Jiang Y, Bai Y. Wind Load and Wind-Induced Vibration of Photovoltaic Supports: A Review[J]. Sustainability, 2024, 16, 2551.
[18] 郭涛, 杨渊茗, 黄国强, 张晋铭. 山区峡谷地形下柔性支撑光伏阵列的风振特性研究[J]. 太阳能学报, 2023, 44(11): 131-140.
Guo Tao, Yang Yuanming, Huang Guoqiang, Zhang Jinming. Wind- induced vibration analysis of flexible photovoltaic support structure under mountain canyon terrain [J]. Acta Energiae Solaris Sinica, 2023, 44(11): 131-140.
[19] 楼文娟, 单弘扬, 杨臻, 等. 超大型阵列光伏板体型系数遮挡效应研究[J]. 建筑结构学报, 2021, 42(5): 47.
LOU Wenjuan, SHAN Hongyang, YANG Zhen, XU Haiwei. Study of shielding effect on shape coefficient of super-large photovoltaic arrays[J]. Journal of Building Structures, 2021, 42(05): 47-54.
[20] 建筑结构荷载规范: GB 50009-2012[S]. 北京: 中国建筑工业出版社, 2012.
[21] 陈健翔, 杨睿月, 黄中伟, 李根生, 秦小舟, 李敬彬, 武晓光. 基于分离涡模拟的旋转射流流场结构特征分析[J]. 石油勘探与开发, 2022, 49(4): 806-817.Jianxiang CHEN, Ruiyue YANG, Zhongwei HUANG, Gensheng LI, Xiaozhou QIN, Jingbin LI, Xiaoguang WU. Detached eddy simulation on the structure of swirling jet flow field[J]. Petroleum Exploration and Development, 2022, 49(4): 806-817.

PDF(5361 KB)

Accesses

Citation

Detail

段落导航
相关文章

/