基于IPSO-BPNN自适应未知输入离散卡尔曼滤波器的桥面不平顺识别

李韶华1, 吕壮 2, 张宇1, 3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (16) : 204-217.

PDF(5484 KB)
PDF(5484 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (16) : 204-217.
土木工程

基于IPSO-BPNN自适应未知输入离散卡尔曼滤波器的桥面不平顺识别

  • 李韶华1,吕壮 2,张宇*1,3
作者信息 +

Bridge roughness identification based on IPSO-BPNN adaptive unknown input discrete Kalman filter

  • LI Shaohua1,L Zhuang2,ZHANG Yu*1,3
Author information +
文章历史 +

摘要

为实现车辆行驶过程中对桥面不平顺的准确识别,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization,IPSO)反向传播神经网络(Back propagation Neural Networks,BPNN)自适应未知输入离散卡尔曼滤波器的桥面不平顺识别算法。基于车桥耦合模型,以轮胎-桥面接触点处竖向位移为未知输入,以车轮位移、加速度及车身加速度作为观测向量,设计未知输入离散卡尔曼滤波器;通过改进粒子群算法得出各桥面等级下的测量噪声协方差矩阵的最优值,通过BP神经网络分段实时对桥面不平顺进行等级分类,二者结合实时更新卡尔曼滤波器中的测量噪声矩阵,从而自适应识别不同桥面不平顺。在不同行驶速度、不同桥面等级、不同车桥质量比等工况下进行了仿真分析,并设计了通过振动台进行车桥耦合实验的方案,根据振动台提取的车身加速度和车轮加速度等参数,通过二重积分去趋势项得到车轮位移,整理数据作为观测向量设计滤波器。为匹配振动台的四分之一悬架模型,等比例缩尺二自由度车辆模型参数和桥梁模型参数,以保证缩尺后桥梁的挠曲线和竖向位移的相似性。仿真和实验结果表明:基于IPSO-BPNN自适应未知输入离散卡尔曼滤波器能够在多种工况下自适应调节,相较于传统卡尔曼滤波器,识别的桥面不平顺均方根误差、最大绝对误差和相关系数分别提高11.29%、33.52%、2.84%,该算法不仅识别精度高,而且有很强的鲁棒性。

Abstract

To accurately identify bridge roughness during vehicle travel, this paper proposes an IPSO-BPNN (Improved Particle Swarm Optimization, Backpropagation Neural Networks) adaptive unknown input discrete Kalman filter algorithm. Using a vehicle-bridge coupling model, the vertical displacement at the tire-bridge contact point is treated as the unknown input, while wheel displacement, acceleration, and vehicle body acceleration are used as the observation vector to design the unknown input Kalman filter. An improved particle swarm optimization algorithm is applied to obtain the optimal measurement noise covariance matrix for different bridge roughness levels. A BP neural network classifies bridge roughness levels in real time, and both methods work together to adaptively update the Kalman filter’s measurement noise matrix. Simulations under various driving speeds, bridge roughness levels, and vehicle-bridge mass ratios were conducted, and a shaking table experiment was designed to validate the approach. To match the quarter suspension model of the vibration table, the parameters of the two-degree-of-freedom vehicle model and the bridge model are scaled proportionally to ensure the similarity of the deflection curve and vertical displacement of the bridge after scaling. Results show that the proposed method improves root mean square error, maximum absolute error, and correlation coefficient by 11.29%, 33.52%, and 2.84%, respectively, demonstrating high accuracy and robustness.

关键词

桥面不平顺识别 / 自适应卡尔曼滤波器 / 车桥耦合 / 车辆平顺性

Key words

bridge roughness recognition / adaptive Kalman filter / vehicle-bridge coupling / ride comfort

引用本文

导出引用
李韶华1, 吕壮 2, 张宇1, 3. 基于IPSO-BPNN自适应未知输入离散卡尔曼滤波器的桥面不平顺识别[J]. 振动与冲击, 2025, 44(16): 204-217
LI Shaohua1, L Zhuang2, ZHANG Yu1, 3. Bridge roughness identification based on IPSO-BPNN adaptive unknown input discrete Kalman filter[J]. Journal of Vibration and Shock, 2025, 44(16): 204-217

参考文献

[1] 李小珍, 辛莉峰, 王  铭,等. 车-桥耦合振动2019年度研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(5): 126-138.
LI Xiao-zhen, XIN Li-feng, WANG Ming, et al. State-of-the-art review of vehicle-bridge interactions in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 126-138.
[2] 卢俊辉, 巫世晶. 基于车轮振动的路面实时识别研究[J]. 振动与冲击,2008, 27 (04): 19-22+166.
LU Jun-hui, WU Shi-jing. Real-time road surface identification based on wheel vibration[J]. Journal of Vibration and Shock, 2008, 27(04): 19-22+166.
[3] 陈  双, 王丽佳. 基于车辆振动响应反向分析的路面等级辨识方法[J]. 振动与冲击,2022, 41(17): 145-151+169.
CHEN Shuang,WANG Li-jia. Pavement grade identification method based on reverse analysis of vehicle vibration response[J]. Journal of vibration and shock, 2022, 41(17): 145-151+169.
[4] WANG S, LU Z, LIU X H, et al. Active control of hydropneumatic suspension parameters of wheel loaders based on road condition identification[J]. International Journal of Advanced Robotic Systems, 2018, 15(6): p.17298
81418817425.
[5] Zou J Y, Guo W B, and Wang F. A Study on Pavement Classification and Recognition Based on VGGNet-16 Transfer Learning[J]. Electronics, 2023, 12(15): 3370.
[6] Feng J, Ning W, Yan Z, et al. Study on Road Condition Recognition Method Based on Convolutional Neural Network[J]. 2018 International Conference on Network, Communication, Computer Engineering (NCCE 2018). Atlantis Press, 2018.
[7] 赵  健, 刘彦辰, 朱  冰, 等. 基于SHAP-RF框架的越野车辆路面识别算法研究[J]. 力学学报, 2022, 54(10): 2922-2935.
ZHAO Jian, LIU Yan-bing, ZHU Bing, et al. Research on road recognition algorithm of off-road vehicle based on SHAP-RF framework[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2922-2935.
[8] 刘  秋, 孙晋伟, 张  华, 等. 基于卷积神经网络的路面识别及半主动悬架控制[J]. 兵工学报, 2020, 41(08): 1483-1493.
LIU Qiu, SUN Jin-wei, ZHANG Hua, et al. Road identification and semi-active suspension control based on convolutional neural network[J]. Acta Armamentarii, 2020, 41(08):1483-1493.
[9] Xu, J C, Yu, X. Pavement roughness grade recognition based on one-dimensional residual convolutional neural network[J]. Sensors, 2023, 23(4): 2271.
[10] Yang H L, Kim B G, Jong-S O, et al. Simultaneous estimation of vehicle mass and unknown road roughness based on adaptive extended Kalman filtering of suspension systems[J]. Electronics, 2022, 11(16): 2544.
[11] Wang H Q, Tomonori N, Zhao B Y, et al. Identification of moving vehicle parameters using bridge responses and estimated bridge pavement roughness[J]. Engineering Structures, 2017, 153: 57-70.
[12] 丁仁凯, 蒋  俞, 汪若尘, 等. 考虑未知输入的主动悬架路面高程与等级识别研究[J]. 汽车工程, 2021, 43(02): 278-286.
DING Ren-kai, JIANG Yu, WANG Ruo-chen. Research on road elevation and grade identification of active suspension considering unknown inputs[J]. Automotive Engineering, 2021, 43(02): 278-286.
[13] He Y, Yang J P. Using Kalman filter to estimate the pavement profile of a bridge from a passing vehicle considering their interaction[J]. Acta Mechanica, 2021, 232: 4347-4362.
[14] Yang T P, Li P Q, Li Q P, et al. Active suspension con-trol strategy for vehicles based on road surfacerecogniti-on[J]. Nonlinear Dynamics, 2024, 112(13): 11043-11065.
[15] 刘  浪, 张志飞, 鲁红伟, 等. 基于增广卡尔曼滤波并考虑车辆加速度的路面不平度识别[J]. 汽车工程, 2022, 44(02): 247-255+297.
LIU Lang, ZHANG Zhi-fei, LU Hong-wei, et al. Road rough-ness identification based on augmented Kalman filtering with consideration of vehicle acceleration[J]. Automotive Engineering, 2022, 44(02): 247-255+297.
[16] 李韶华, 李健玮, 冯桂珍. 基于GA-LSTM自适应卡尔曼滤波的路面不平度识别[J]. 振动与冲击, 2024, 43(09): 121-130.
LI Shao-hua, LI Jian-wei, FENG Gui-zhen. Road roughness recognition based on GA-LSTM adaptive Kalman filtering[J]. Journal of Vibration and Shock, 2024, 43(09): 121-130.
[17] Qin Y C, Ji F G, and Gu L. The research of road profile estimation based on acceleration measurement[J]. Applied Mechanics and Materials, 2012, 226(05):1614-1617.
[18] Du R H, Qiu G, Gao K, et al. Abnormal road surface recognition based on smartphone acceleration sensor[J]. Sensors, 2020, 20(2): 451.
[19] Guo, X R, Jin, Z Q, Lei, Y. Drive-By Identification of Joint Bridge Damage and Surface Roughness Based on Sensitivity Analysis of Residual Contact Point Deflections[J]. International Journal of Structural Stability and Dynamics, 2025: 2550187.
[20] 张青霞, 侯吉林, 安新好, 等. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(06): 1765-1772.
ZHANG Qing-xia, HOU Ji-lin, AN Xin-hao, et al. Road roughness identification method based on vehicle impulse response[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(06): 1765-1772.
[21] 李韶华, 冯桂珍, 丁虎. 考虑胎路多点接触的电动汽车−路面耦合系统振动分析[J]. 力学学报, 2021, 53(9): 2554-2568.
LI Shao-hua, FENG Gui-zhen, DING Hu. Vibration analysis of electric vehicle-road coupling system considering tire-road multi-point contact[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2554-2568.
[22] 张  宇, 李韶华, 任剑莹. 参数冻结精细指数积分法在非线性车桥耦合振动分析中的应用[J]. 力学学报, 2024, 56(1): 258-272.
ZHANG Yu, LI Shao-hua, REN Jian-ying. Parameter freezing precise exponential integrator and its application in nonlinear vehicle-bridge Coupled vibration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 258-272.
[23] 张  宇, 王嘉伟, 李韶华,等. 基于智能驾驶电动汽车的多车−桥梁耦合系统动力学特性研究[J]. 力学学报, 2022, 54(9): 2627-2639.
ZHANG Yu, WANG Jia-wei, Ren Jian-ying. Dynamic characteristics of multi-vehicle-bridge coupling system based on intelli-gent driving electric vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2627-2639.
[24] ISO 2631-1:1997(E). Mechanical vibration and shock Evaluation of human exposure to whole-body vibration-Part 1: General requirements.
[25] 胡玉梅, 周英杰, 朱  浩, 等. 基于趋势项误差控制的频域积分算法研究与应用[J]. 振动与冲击,2015, 34(02): 171-175.
HU Yu-mei, ZHOU Ying-jie, ZHU Hao, et al. Integration algorithm based on trend-control of error in frequency domain[J]. Journal of Vibration and Shock, 2015, 34(02): 171-175.
[26] 乐友喜, 姚晓辰, 付俊楠, 等.基于自适应动态粒子群优化的RAK-SVD方法[J]. 石油地球物理勘探, 2024, 59(03): 494-503.
LE You-shan, YAO Xiao-chen, FU Jun-nan, et al. RAK-SVD method based on adaptive dynamic particle swarm optimization[J]. Oil Geophysical Prospecting, 2024, 59(03): 494-503.
[27] 康岩松, 臧顺来. 基于多种策略的改进粒子群优化算法[J]. 东北大学学报(自然科学版), 2023, 44(08): 1089-1097.
KANG Yan-song, ZANG Shun-lai. Improved particle swarm  optimization algorithm based on multiple strategies[J]. Journal of Northeastern University(Natural Science), 2023, 44(08): 1089-1097.
[28] 梁  旺, 秦兆博, 陈  亮, 等. 基于改进BP神经网络的智能车纵向控制方法[J]. 汽车工程, 2022, 44(08): 1162-1172.
LIANG Wang, QIN Zhao-bo, CHEN Liang, et al. Longitudinal control method of intelligent vehicles based on the improved BP neural network[J]. Automotive Engineering, 2022, 44(08): 1162-1172.
[29] 陈树海, 郭安丰, 吴邵庆, 等. 基于BP神经网络的星箭界面动载荷识别[J]. 振动与冲击, 2023, 42(05): 279-286+304.
CHEN Shu-hai, GUO An-feng, WU Shao-qing, et al. Dynamic load identification of satellite-rocket interface based on BP neural network[J]. Journal of Vibration and Shock, 2023, 42(05): 279-286+304.
[30] 刘溢凡, 张  杰, 张新宇, 等. 基于“AM-GoogLeNet + BP”联合数据驱动的混凝土细观模型压缩应力−应变曲线预测[J]. 力学学报, 2023, 55(4): 925-938.
LIU Yi-fan, ZHANG Jie, ZHANG Xin-yu, et al. Prediction of concrete meso-model compression stress-strain curvebased on “AM-GoogLeNet + BP” combined data-driven methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 925-938.
[31] 刘鸿文. 材料力学Ⅰ[M]. 第6版. 北京: 高等教育出版社, 2017. 184-202.
LIU Hong-wen. Mechanics of Materials I[M]. Beijing: Higher Education Press, 2017. 184-202(in Chinese).

PDF(5484 KB)

88

Accesses

0

Citation

Detail

段落导航
相关文章

/