力学超材料带隙调控的胞元折叠方法及带隙变化规律

裘江海1, 2, 杨德庆1, 2, 张栗铭1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 104-111.

PDF(1968 KB)
PDF(1968 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 104-111.
振动理论与交叉研究

力学超材料带隙调控的胞元折叠方法及带隙变化规律

  • 裘江海1,2,杨德庆*1,2,张栗铭1
作者信息 +

Cell folding method and band gap variation analysis for band gap control in mechanical metamaterials

  • QIU Jianghai1,2,YANG Deqing*1,2,ZHANG Liming1
Author information +
文章历史 +

摘要

针对减振用的负泊松比力学超材料,提出了基于XOY平面胞元的Z轴维度折叠的带隙调控方法。基于三维折叠胞元的带隙计算方法及对应的三维Bloch-Floquet周期性边界条件,应用有限元法对三类负泊松比超材料构型(箭形、星形和内六角形)的能带曲线与样件的振级落差进行数值计算,并从振动模态角度分析了这类力学超材料的带隙变化原因。不同能带曲线对折叠角度的敏感性体现在胞元对应振动模态的局部刚度上,刚度变化可以产生或消灭带隙。研究表明,将胞元折叠的带隙调控方式应用于三类超材料胞元后,其能带结构均表现出相似的带隙演变规律,通过折叠角度控制胞元的几何形状可以调控能带曲线的移动。在特定折叠角度下超材料的能带结构中可以产生新的方向带隙,原有方向带隙也会消失。以箭形胞元为例,制作了超材料样件,通过扫频试验验证了数值计算结果和带隙变化规律的准确性,其能带结构中第一条方向带隙由3989.2Hz~4204.4Hz变为3843.4Hz~4176.5Hz。

Abstract

A bandgap control method based on XOY plane cell element Z-axis dimension folding is proposed for negative Poisson's ratio mechanical metamaterials used for vibration reduction. Based on the three-dimensional folded cell element method and corresponding three-dimensional Bloch-Floquet periodic boundary conditions, the finite element method is applied to numerically calculate the band curves of three types of negative Poisson's ratio metamaterials (arrow shaped, star shaped, and inner hexagonal) and the vibration level drop of the samples. The reasons for the band gap changes of these mechanical metamaterials are analyzed from the perspective of vibration modes. The sensitivity of different band curves to folding angles is reflected in the local stiffness of the corresponding vibration modes of the cell, and stiffness changes can generate or eliminate band gaps. Research has shown that when the bandgap control method of cell folding is applied to three types of metamaterial cells, their band structures all exhibit similar band gap evolution patterns. By controlling the geometric shape of the cells through folding angle, the movement of the band curve can be controlled. Under specific folding angles, new directional band gaps can be generated in the band structure of metamaterials, and the original directional band gaps will also disappear. Taking the arrow shaped cell as an example, a metamaterial sample was made, and the accuracy of the numerical calculation results and the band gap variation law were verified through frequency sweep experiments. The first directional band gap in the energy band structure changed from 3989.2Hz to 4204.4Hz to 3843.4Hz to 4176.5Hz. 

关键词

超材料;负泊松比;带隙调控;折叠胞元;三维带隙计算  /

Key words

metamaterials / negative Poisson's ratio / band gap regulation / folding cell / 3D bandgap calculation

引用本文

导出引用
裘江海1, 2, 杨德庆1, 2, 张栗铭1. 力学超材料带隙调控的胞元折叠方法及带隙变化规律[J]. 振动与冲击, 2025, 44(2): 104-111
QIU Jianghai1, 2, YANG Deqing1, 2, ZHANG Liming1. Cell folding method and band gap variation analysis for band gap control in mechanical metamaterials[J]. Journal of Vibration and Shock, 2025, 44(2): 104-111

参考文献

[1] 杨德庆. 船舶与海洋工程结构动力学[M]. 上海: 上海交通大学出版社, 2022.
[2] Vergassola, G., T. Pais and D. Boote. Low-Frequency analysis of super yacht free vibrations[J]. Ocean Engineering,2019,176: p. 199-210
[3] 冯涛, 王余华, 王晶等. 结构型声学超材料研究及应用进展[J]. 振动与冲击, 2021,40(20): 150-157.
FENG Tao, WANG Yuhua, Wang jin, et al. Progress in research and application of structural acoustic metamaterials [J]. Journal of Vibration and Shock, 2021,40(20): 
[4] 杨德庆, 李清, 张相闻, 等. 船舶振动声学中的超材料设计理论与方法[M]. 上海: 上海交通大学出版社, 2023.
[5] 杨德庆, 夏利福. 负泊松比超材料浮筏设计与减振机理研究[J]. 中国造船, 2018,59(03):144-154.
YANG Deqing, XIA Lifu. Vibration Reduction Mechanism and Design Method of Floating Raft with Auxetic Components [J]. Shipbuilding of China, 2018,59(03):144-154.
[6] 周济, 于相龙. 智能超材料的创新特性与应用前景[J]. 中国工业和信息化, 2018, (8): 22-28.
ZHOU Ji, YU Xianglong. Innovative characteristics and application prospects of intelligent metamaterials [J]. China Industry & Information Technology, 2018, (8): 22-28.
[7] 张栗铭, 杨德庆. 力学与声学超材料在船舶工程中的应用研究综述[J]. 中国舰船研究, 2023,18(02):1-19+47.
ZHANG Liming, YANG Deqing. Review on the applied research of mechanical and acoustic metamaterials in ship engineering [J]. Chinese Journal of Ship Research, 2023, 18(02):1-19+47.
[8] Gasparetto V E L, ElSayed M S A. Shape transformers for phononic band gaps tuning in two-dimensional Bloch-periodic lattice structures [J]. European Journal of Mechanics A-Solids, 2021,89:104278.
[9] 孙维鹏, 沈名钊, 钟可欣等. 双侧亥姆霍兹声学超材料带隙特性[J]. 振动与冲击, 2023,42(23):144-150+158.
SUN Weipeng, SHEN Mingzhao, ZHONG Kexin, et al, Band gap characteristics of bilateral Helmholtz acoustic metamaterial [J]. Journal of Vibration and Shock, 2023, 42(23):144-150+158.
[10] 郭振坤, 李凤明. 超材料结构的弹性波带隙主动调控研究进展[J]. 科学通报, 2022, 67(12): 1249-1263.
GUO Zhenkun, LI Fengming. Research progress on active control of elastic wave bandgap in metamaterial structures [J]. Chinese Science Bulletin, 2022, 67(12): 1249-1263. 
[11] Sigalas M, Economou E.N. Band structure of elastic waves in two dimensional systems [J]. Solid State Communications, 1993. 3(86): p. 141-143.
[12] Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials[J]. Science,2000,289 (5485): 1734-1736.
[13] Pai F P, Peng H, Jiang S. Acoustic metamaterial beams based on multi-frequency vibration absorbers[J]. International Journal of Mechanical Sciences,2014,79195-205.
[14] Xiao Y, Wang S, Li Y, et al. Closed-form bandgap design formulas for beam-type metastructures[J]. Mechanical Systems and Signal Processing, 2021,159
[15] Xiao Y, Wen J, Yu D, et al. Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms[J]. Journal of Sound and Vibration, 2013,332(4):867-893.
[16] 赵振成, 张涵柯, 郑玲. 一种局域共振型声学超材料的半解析建模与带隙机制研究[J]. 振动与冲击, 2024,43(03):27-36+45.
ZHAO Chencheng, ZHANG Hanke, ZHENG Ling. Semi-analytical modeling and bandgap mechanism of a local resonance type acoustic metamaterial [J]. Journal of Vibration and Shock, 2024,43(03):27-36+45.
[17] 杜阔, 徐峰祥, 潘宇雄. 非轴对称五模超材料低频声波调控分析[J]. 应用声学, 2023,42(06):1225-1234.
DU Kuo, XU Fengyang, PAN Yuxiong. Analysis of low-frequency acoustic wave regulation of non-axisymmetric pentamode metamaterials [J]. Journal of Applied Acoustics, 2023,42(06): 1225-1234.
[18] 刘宏, 余江, 张凯等. 多稳态力学超材料带隙特性及调控研究[J]. 动力学与控制学报, 2023,21(07):5-11.
LIU Hong, YU Jiang, ZHANG Kai, et al. Multi-stable Mechanical Metamaterials for Band Gap Tuning [J]. Journal of Dynamics and Control, 2023,21(07):5-11.
[19] 李清. 船舶振动声学耦合分析及减振降噪超材料设计[D].上海: 上海交通大学, 2020.
[20] 张帆. 二维十字型声子晶体低频带隙特性及其缺陷态的声约束和波导研究[D]. 兰州交通大学, 2021.
[21] 谢泽龙, 杨廷方, 刘寒遥等. 基于多层六边形MAM的变压器降噪方法设计[J]. 振动与冲击, 2024,43(02):201-207.
XIE Zelong, YANG Tingfang, LIU Hanyao, et al. Transformer noise reduction method based on multilayer hexagond membrane-type acoustic metamaterial [J]. Journal of Vibration and Shock, 2024,43(02):201-207.
[22] MENG J, DENG Z, ZHANG K, et al. Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio[J]. Smart materials and structures, 2015,24(9): 95011.
[23] LI Q, YANG D. Vibro-acoustic performance and design of annular cellular structures with graded auxetic mechanical metamaterials[J]. Journal of Sound and Vibration, 2020,466: 115038.
[24] 高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021,49(5): 38-47.
GAO Yukui. Auxetic metamaterials and structures [J]. Journal of Materials Engineering, 2021,49(5): 38-47.
[25] 张研, 韩林, 蒋林华, 等. 声子晶体的计算方法与带隙特性[M]. 北京: 科学出版社, 2015.
[26] 毛翔, 杨德庆, 李清. 带隙特性计算的等效梁元法与等效平面应变法[J]. 振动与冲击, 2023,42(08):319-325.
MAO Xiang, YANG Deqing, LI Qing. Equivalent beam and equivalent plane strain method for bang gap analysis of metamaterials [J]. Journal of Vibration and Shock, 2023, 42(08):319-325.

PDF(1968 KB)

855

Accesses

0

Citation

Detail

段落导航
相关文章

/