基于ALE-ANCF方法的卷曲展开机构动力学建模与分析

黄斐1, 袁婷婷2, 刘锦阳1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 131-142.

PDF(1457 KB)
PDF(1457 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 131-142.
航空航天

基于ALE-ANCF方法的卷曲展开机构动力学建模与分析

  • 黄斐1,袁婷婷2,刘锦阳*1
作者信息 +

Deployment dynamics modelling and analysis of a rolled deployable mechanism based on the ALE-ANCF method

  • HUANG Fei1,YUAN Tingting2,LIU Jinyang*1
Author information +
文章历史 +

摘要

针对含复杂的多区域接触的卷曲展开机构,本文将其简化为带刚性转盘的变长度柔性构件,建立多体系统动力学模型,以实现高效仿真。首先基于任意拉格朗日-欧拉描述的绝对节点坐标法(ALE-ANCF)对变长度梁进行建模,然后将复杂接触问题简化为移动边界的约束关系,给出一种增删节点处理方法,有效解决了单元长度变化引起的奇异和精度问题,在此基础上建立了刚-柔耦合多体系统的动力学模型,用隐式算法实现了动力学方程的数值求解。通过滑绳和动滑轮算例验证了建模方法的有效性。最后建立了卷曲机构充气展开系统的简化动力学模型,该模型采用任意拉格朗日-欧拉移动网格实时跟踪卷曲机构的位置,精准捕捉移动边界点,从而高效确定接触行为。分析了气压力与黏附力对展开动力学特性的影响,通过控制黏附力分布,实现了卷曲机构的匀速展开,对工程实际具有参考价值。

Abstract

In this paper, the crimped expansion mechanism with complex multi-region contact is simplified to a variable-length flexible component attached with a rigid disk, and the multi-body system dynamics model is established to realize efficient simulation. Firstly, a variable-length beam is modeled using the absolute nodal coordinate formulation described by arbitrary Lagrangian–Eulerian method (ALE-ANCF), and then the complex contact problem is simplified into constraint relation of moving boundary. A method for adding and deleting nodes is presented which can effectively solve the singularity and accuracy problems caused by the change of element length. On this basis, rigid-flexible coupling dynamic model for the multibody system is established, and the numerical solution of the dynamic equations is realized by an implicit algorithm. The effectiveness of the modeling method is verified by examples of sliding rope and moving pulley. Finally, a simplified dynamic model of the rolled deployable mechanism inflatable deployment system is developed, in which arbitrary Lagrangian-Eulerian moving mesh is used to track the real-time position of the rolled deployable mechanism, accurately capture the moving boundary points, and quickly determine the contact behavior. The influence of air pressure and adhesion force on the development dynamic characteristics is analyzed. By controlling the distribution of adhesion force, the uniform deployment of the rolled deployable mechanism is achieved, which holds practical engineering significance.

关键词

变长度梁 / 任意拉格朗日-欧拉描述的绝对节点坐标法 / 卷曲展开机构 / 动力学建模 / 移动边界约束方程

Key words

variable-length beam;absolute nodal coordinate formulation described by arbitrary Lagrangian–Eulerian method / rolled deployable mechanism / Dynamic modelling / Constraint equations of moving boundary

引用本文

导出引用
黄斐1, 袁婷婷2, 刘锦阳1. 基于ALE-ANCF方法的卷曲展开机构动力学建模与分析[J]. 振动与冲击, 2025, 44(2): 131-142
HUANG Fei1, YUAN Tingting2, LIU Jinyang1. Deployment dynamics modelling and analysis of a rolled deployable mechanism based on the ALE-ANCF method[J]. Journal of Vibration and Shock, 2025, 44(2): 131-142

参考文献

[1] LIU R W, GUO H W, LIU R Q, et al. Structural design and optimization of large cable–rib tension deployable antenna structure with dynamic constraint [J]. Acta Astronautica, 2018, 151: 160-172. 
[2] PENG Y, ZHAO Z H, ZHOU M, et al. Flexible multibody model and the dynamics of the deployment of mesh antennas [J]. Journal of Guidance, Control, and Dynamics, 2017, 40(6): 1499-1510.
[3] PUIG L, BARTON A, RANDO N. A review on large deployable structures for astrophysics missions [J]. Acta Astronautica, 2010, 67: 12-26.
[4] 卫剑征,毛丽娜,杜星文.空间卷曲折叠管充气控制展开动力学研究[J]. 工程力学, 2009, 26(1) : 227-232.
WEI Jian-zheng, MAO Li-na, DU Xing-wen. Study for inflatable control deployment dynamics of rolled booms [J]. Engineering Mechanics,2009, 26(1) : 227-232.
[5] CADOGAN D, LIN J K H. Inflatable Solar Array Technology [C]// 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper, 1999, 1075.
[6] LICHODZIEJEWSKI D, WEST J, REINERT R, et al. Bringing an Effective Solar Sail Design Toward TRL 6 [C]// 39th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville:AIAA Paper, 2003, 4659. 
[7] CHEN Z C, CHEN M, ZHU H B, et al. An Inflatable Axial-Mode Helical Antenna with Retractability and Releasability for Satellite Navigation and Positioning System [J]. AEU - International Journal of Electronics and Communications, 2022, 156: 154345.
[8] PAPPA R S, LASSITER J O, ROSS B P. Structural dynamics experimental activities in ultralightweight and inflatable space structures [J]. Journal of Spacecraft and Rockets, 2003, 40(1) : 15-23.
[9] FAY J P, STEELE C R. Forces for Rolling and Asymmetric Pinching of Pressurized Cylindrical Tubes [J]. Journal of Spacecraft and Rockets, 1999, 36(4): 531–537. 
[10] SALAMA M, FANG H, LOU M. Resistive Deployment of Inflatable Structures Using Velcro [J]. Journal of Spacecraft and Rockets, 2002, 39(5): 711–716.
[11] FANG H, LOU M, HAH J. Deployment Study of a SelfRigidizable Inflatable Boom[J]. Journal of Spacecraft and Rockets, 2006, 43(1): 25–30.
[12] FAN Y X, XIA J. Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method [J]. Chinese Journal of Aeronautics, 2014, 27: 1373-1383.
[13] 侯伟亚. 基于绝对坐标方法与SPH方法的充气薄膜空间结构展开动力学研究[D].北京理工大学硕士学位论文, 2016.
HOU Ya-wei.Deployment dynamics of inflatable membrane space structures described by Absolute-Coordinate-Based method and SPH method [D]. Beijing Institute of Technology, 2016.
[14] WEI J Z, TAN H F, SUN H W, et al. Simulation and Experiment for Inflatable Control Deployment of Rolled Booms[C]// Proceedings of the 51st AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, 2010.
[15] HONG D F, TANG J L, REN G X. Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation [J]. Journal of Fluids & Structures, 2011, 27: 1137–1148.
[16] YUAN T T, TANG L L, LIU J Y. Dynamic modeling and analysis for inflatable mechanisms considering adhesion and rolling frictional contact [J]. Mechanism and Machine Theory, 2023, 184: 105295.
[17] STYLIANOU M, TABARROK B. Finite element analysis of an axially moving beam part I: time integration [J]. Journal of Sound and Vibration, 1994, 178: 433–453.
[18] STYLIANOU M, TABARROK B. Finite element analysis of an axially moving beam part II: stability analysis [J]. Journal of Sound and Vibration, 1994, 178: 455–481.
[19] CHANG J R, LIN W J, HUANG C J. Vibration and stability of an axially moving Rayleigh beam [J]. Applied Mathematical Modelling, 2010, 34:1482–1497.
[20] FUNG R F, LU L Y, HUANG S C. Dynamic modelling and vibration analysis of a fexible cable-stayed beam structure [J]. Journal of Sound and Vibration, 2002, 254:717–726
[21] TANG J L, REN G X, ZHU D W, et al. Dynamics of variable-length tethers with application to tethered satellite deployment [J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8): 3411-3424.
[22] HONG D F, REN G X. A modeling of sliding joint on one-dimensional flexible medium [J]. Multibody System Dynamics, 2011, 26(1): 91-106.
[23] YANG S, DENG Z Q, SUN J, et al. A variable-length beam element incorporating the effect of spinning [J]. Latin American Journal of Solids and Structures, 2017, 14: 1506-1528.
[24] 王忠民,吴力国.基于变长度单元ANCF的轴向伸展悬臂梁振动分析[J]. 振动与冲击, 2019, 38(3): 186-191
WANG Zhong-min,WU Li-guo. Vibration analysis of axially deploying cantilever beam based on ANCF with length-varying beam element[J]. Journal of Vibration and Shock, 2019, 38(3): 186-191
[25] DENG L F, Niu M Q, FAN Y M, et al. Efficient Mesh Updating Scheme for the ALE Corotational Formulation of an Arbitrarily Curved Beam [J]. Acta Mechanica Solida Sinica, 2023, 36: 647–65.
[26] SHAN M, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods [J]. Progress in Aerospace Sciences, 2016, 80: 18-32.
[27] 朴丽花,秦远田,张子昊,等.绳控多模块固面天线展开动力学分析与优化[J]. 振动与冲击, 2023, 42(19): 301-308
PIAO Li-hua, QIN Yuan-tian, ZHANG Zi-hao, et,al.Dynamic analysis and optimization for deployment of cable-controlled multi-module solid surface antenna[J]. Journal of Vibration and Shock, 2023, 42(19): 301-308
[28] WILKIE W K, FERNANDEZ J M, STOHLMAN O R, et al.An overview of the NASA advanced composite solar sail (ACS3) technology demonstration project.[C]//AIAA Scitech Forum, 2021,01.

PDF(1457 KB)

Accesses

Citation

Detail

段落导航
相关文章

/