负刚度惯性阻尼器控制高层结构振动的试验与模拟研究

赵玮伟, 全涌

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 167-176.

PDF(2167 KB)
PDF(2167 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 167-176.
土木工程

负刚度惯性阻尼器控制高层结构振动的试验与模拟研究

  • 赵玮伟,全涌*
作者信息 +

Tests and simulations on the vibration control of a high-rise structure with a tuned viscous mass damper with negative stiffness

  • ZHAO Weiwei,QUAN Yong*
Author information +
文章历史 +

摘要

建立了控制多自由度高层建筑风致振动的负刚度惯性调谐阻尼器系统(negative stiffness-tuned viscous mass damper,NS-TVMD)的理论模型,通过3D打印技术设计制造了以齿轮齿条式惯容器元件和预压弹簧式负刚度元件组装而成的NS-TVMD系统,并将该系统安装在一个6自由度高层建筑气动弹性模型上进行了风洞试验研究。然后通过数值模拟和试验结果相互验证,并分析得到了NS-TVMD的最优参数。结果表明:准确调谐的NS-TVMD系统比传统调谐惯性黏滞阻尼器系统对高层建筑的风致振动具有更好的控制效果。由于负刚度组件在静态情况下具有高刚度,而在动态情况下具有低刚度,当NS-TVMD系统被调频至受控结构的一阶自振频率附近时,它不仅能有效控制结构的一阶模态响应,还能通过其低动态刚度特性控制结构的高阶模态响应。

Abstract

A theoretical model of a tuned viscous mass damper with negative stiffness-tuned viscous mass damper(NS-TVMD) system for controlling wind-induced vibrations in a multi-degree-of-freedom (MDOF) model is established. The NS-TVMD system is designed and manufactured using 3D printing technology, incorporating a gear-rack inerter device and a pre-compressed spring negative stiffness device. This system is installed on a 6-degree-of-freedom high-rise building aeroelastic model for wind tunnel testing. Numerical simulations and experimental results are cross-validated to determine the optimal parameters for the NS-TVMD. The results indicate that the accurately tuned NS-TVMD system exhibits better control of wind-induced vibrations in high-rise buildings compared to traditional tuned viscous mass damper (TVMD) systems. Because the negative stiffness system exhibits high stiffness in static conditions and low stiffness in dynamic conditions, tuning the NS-TVMD system to the first natural frequency of the controlled structure effectively controls not only the first modal response but also the higher modal responses.

关键词

惯性阻尼器 / 负刚度弹簧 / 风洞试验 / 风振控制

Key words

Inerter damper / negative stiffness spring / wind tunnel test / wind-reduced vibration control

引用本文

导出引用
赵玮伟, 全涌. 负刚度惯性阻尼器控制高层结构振动的试验与模拟研究[J]. 振动与冲击, 2025, 44(2): 167-176
ZHAO Weiwei, QUAN Yong. Tests and simulations on the vibration control of a high-rise structure with a tuned viscous mass damper with negative stiffness[J]. Journal of Vibration and Shock, 2025, 44(2): 167-176

参考文献

[1] Lin C-C, Chen C-L, and Wang J-F. Vibration Control of Structures with Initially Accelerated Passive Tuned Mass Dampers under Near-Fault Earthquake Excitation [J]. Computer-Aided Civil and Infrastructure Engineering, 2010, 25(1): p. 69-75. 10.1111/j.1467-8667.2009.00607.x.
[2] Wang F C, Hong M F, and Lin T C. Designing and testing a hydraulic inerter [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 225(1): p. 66-72. 10.1243/09544062jmes2199.
[3] Smith M C. Synthesis of mechanical networks: the inerter [J]. IEEE Transactions on Automatic Control, 2002, 47(10): p. 1648-1662. 10.1109/tac.2002.803532.
[4] 潘超, 刘媛, 张瑞甫, 等. 惯容减震系统性能成本控制解析设计方法[J]. 建筑结构学报, 2022, 43(11): p. 107-116.
PAN Chao, LIU Yuan, ZHANG Rui-fu, et al. Performance-cost design method of inerter system based on closed-form formulae [J]. Journal of Building Structures, 2022, 43(11): p. 107-116.
[5] 彭海波, 申永军, 杨绍普. 一种含负刚度元件的新型动力吸振器的参数优化[J]. 力学学报, 2015, 47(02): p. 320-327.
PENG Hai-bo, SHEN Yong-jun, YANG Shao-pu. Parameters optimization of a new type of dynamic vibration absorber with negative stiffness [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(02): p. 320-327.
[6] Lakes R S. Extreme Damping in Composite Materials with a Negative Stiffness Phase [J]. Physical Review Letters, 2001, 86(13): p. 2897-2900. 10.1103/PhysRevLett.86.2897.
[7] Sarlis A A, Pasala D T R, Constantinou M C, et al. Negative stiffness device for seismic protection of structures [J]. Journal of Structural Engineering (United States), 2013, 139(7): p. 1124-1133. 10.1061/(ASCE)ST.1943-541X.0000616.
[8] Zhou N and Liu K. A tunable high-static–low-dynamic stiffness vibration isolator [J]. Journal of Sound and Vibration, 2010, 329(9): p. 1254-1273. 10.1016/j.jsv.2009.11.001.
[9] 罗浩, 张瑞甫, 翁大根, 等. 一种旋转黏滞质量阻尼器对结构响应的控制研究[J]. 防灾减灾工程学报, 2016, 36(02): p. 295-301+308.
LUO Hao, ZHANG Rui-fu, WENG Da-gen, et al. Study of a Series Viscous Mass Damper in the Control of Structural Response [J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(02): p. 295-301+308.
[10] Ikago K, Saito K, and Inoue N. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3): p. 453-474. 10.1002/eqe.1138.
[11] Saito K and Inoue N. A STUDY ON OPTIMUM RESPONSE CONTROL OF PASSIVE CONTROL SYSTEMS USING VISCOUS DAMPER WITH INERTIAL MASS Substituting equivalent nonlinear viscous elements for linear viscous elements in optimum control systems [J]. AIJ Journal of Technology and Design, 2007, 13(26): p. 457-462. 10.3130/aijt.13.457.
[12] Sarlis A A, Pasala D T R, Constantinou M C, et al. Negative Stiffness Device for Seismic Protection of Structures: Shake Table Testing of a Seismically Isolated Structure [J]. 2016, 142(5): p. 04016005. doi:10.1061/(ASCE)ST.1943-541X.0001455.
[13] Antoniadis I, Chronopoulos D, Spitas V, et al. Hyper-damping properties of a stiff and stable linear oscillator with a negative stiffness element [J]. Journal of Sound and Vibration, 2015, 346: p. 37-52. 10.1016/j.jsv.2015.02.028.
[14] Pasala D T R, Sarlis A A, Reinhorn A M, et al. Simulated Bilinear-Elastic Behavior in a SDOF Elastic Structure Using Negative Stiffness Device: Experimental and Analytical Study [J]. 2014, 140(2): p. 04013049. doi:10.1061/(ASCE)ST.1943-541X.0000830.
[15] Su N, Chen Z, Xia Y, et al. Hybrid analytical H-norm optimization approach for dynamic vibration absorbers [J]. International Journal of Mechanical Sciences, 2023. 10.1016/j.ijmecsci.2023.108796.
[16] Wang Z and Giaralis A. Enhanced motion control performance of the tuned mass damper inerter through primary structure shaping %J Structural Control and Health Monitoring[ J]. 2021, 28(8).
[17] Su N, Bian J, Peng S, et al. Analytical optimal design of inerter-based vibration absorbers with negative stiffness balancing static amplification and dynamic reduction effects [J]. Mechanical Systems and Signal Processing, 2023, 192. 10.1016/j.ymssp.2023.110235.
[18] Wang H, Gao H, Li J, et al. Optimum design and performance evaluation of the tuned inerter-negative-stiffness damper for seismic protection of single-degree-of-freedom structures [J]. International Journal of Mechanical Sciences, 2021, 212. 10.1016/j.ijmecsci.2021.106805.
[19] Hao Y, Shen Y, Li X, et al. H-infinity optimization of Maxwell dynamic vibration absorber with multiple negative stiffness springs [J]. Journal of Low Frequency Noise Vibration and Active Control, 2021, 40(3): p. 1558-1570. 10.1177/1461348420972818.
[20] Pietrosanti D, De Angelis M, and Giaralis A. Experimental seismic performance assessment and numerical modelling of nonlinear inerter vibration absorber (IVA)-equipped base isolated structures tested on shaking table [J]. Earthquake Engineering & Structural Dynamics, 2021. 10.1002/eqe.3469.
[21] Pietrosanti D, De Angelis M, and Giaralis A. Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation [J]. International Journal of Mechanical Sciences, 2020, 184. 10.1016/j.ijmecsci.2020.105762.
[22] Nakamura Y, Fukukita A, Tamura K, et al. Seismic response control using electromagnetic inertial mass dampers [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(4): p. 507-527. 10.1002/eqe.2355.
[23] 杨远汉, 黄龙, 曾鹏, 等. 新型准零刚度隔振器设计及动力学研究[J]. 应用力学学报, 2022: p. 1-7.
YANG Yuan-han, HUANG Long, ZENG Peng, et al. Design and dynamic research of a new quasi-zero stiffness vibration isolator [J]. Chinese Journal of Applied Mechanics, 2022: p. 1-7.
[24] 杜宪峰, 马西阳, 隋曦, 等. 一种准零刚度悬置系统的隔振负刚度特性[J]. 汽车安全与节能学报, 2022, 13(04): p. 667-675.
DU Xian-feng, MA Xi-yang, SUI Xi, et al. Characteristics of negative stiffness of vibration isolation for a quasi-zero stiffness suspension system [J]. Journal of Automotive Safety and Energy, 2022, 13(04): p. 667-675.
[25] 孙彤, 李宏男, 赖志路,等. 采用轨道式负刚度装置的结构减震控制研究[J]. 振动工程学报, 2017, 30(03): p. 449-456.
SUN Tong, LI Hong-nan, LAI Zhi-lu, et al. Study on structural vibration control using curve-based negative stiffness device [J]. Journal of Vibration Engineering, 2017, 30(03): p. 449-456.
[26] Li H, Liu M, and Ou J. Negative stiffness characteristics of active and semi-active control systems for stay cables[J]. Structural Control and Health Monitoring, 2008, 15(2): p. 120-142. https://doi.org/10.1002/stc.200.
[27] 普通圆柱螺旋压缩弹簧尺寸及参数(两端圈并紧磨平或制扁)标准:GB/T 2089—2009 [S].北京:中国国家标准化管理委员会,2009:20-22.
Cylindrical coiled compression spring dimensions and parameters: GB/T 2089—2009[S]. Beijing:Standardization Administration of China (SAC), 2009:20-22. (In Chinese)
[28] Ul Islam N and Jangid R S. Optimum parameters and performance of negative stiffness and inerter based dampers for base-isolated structures [J]. Bulletin of Earthquake Engineering, 2022. 10.1007/s10518-022-01372-5.
[29] Shi X, Shi W, Lin K, et al. Optimal design of tuned inerter dampers with series or parallel stiffness connection for cable vibration control [J]. Structural Control & Health Monitoring, 2021, 28(3). 10.1002/stc.2673.
[30] Su N, Xia Y, and Peng S. Filter-based inerter location dependence analysis approach of Tuned mass damper inerter (TMDI) and optimal design [J]. Engineering Structures, 2022, 250. 10.1016/j.engstruct.2021.113459.
[31] Zhang R, Zhang L, Pan C, et al. Targeted modal response control of structures using inerter-based systems based on master oscillator principle [J]. International Journal of Mechanical Sciences, 2021. 10.1016/j.ijmecsci.2021.106636.
[32] 全涌 黄鹏, 顾明. TJ-2风洞大气边界层被动模拟方法的研究[J]. 同济大学学报(自然科学版), 1999(02): p. 11-15+19.
QUAN Yong, HUANG Peng, GU Ming. Research of Passive Simulation Method of Atmospheric Boundary Layer in TJ-2 Wind Tunnel [J]. Journal of Tongji University, 1999(02): p. 11-15+19.
[33] 建筑结构荷载规范:GB 5009—2012[S]. 北京:中国建筑工业出版社,2012:30—63.
Load code for the design of building structures:GB 5009—2012[S]. Beijing:China Architecture and Building Press,2012:30—63. (In Chinese)
[34] 乔浩帅,黄鹏. 基于一阶模态控制的惯质吸振器抗风设计[J]. 振动与冲击, 2023, 42(15): 65-72.
QIAO Hao-shuai, HUANG Peng. Wind resistant design of structure using IVAs based on first order modal control [J]. Journal of Vibration and Shock, 2023, 42(15): 65-72.
[35] 刘欣鹏,杨映雯,孙毅,等. 基于惯容系统位置的调谐质量阻尼器的振动控制研究[J]. 振动与冲击, 2023, 42(1): 215-223.
LIU Xin-peng, YANG Ying-wen, SUN Yi, et al. Vibration control of TMD based on position of inertial system [J]. Journal of Vibration and Shock, 2023, 42(1): 215-223.
[36] Qiao H, Huang P, De Domenico D, et al. Structural control of high-rise buildings subjected to multi-hazard excitations using inerter-based vibration absorbers [J]. Engineering Structures, 2022, 266. 10.1016/j.engstruct.2022.114666.
[37] Wang Q, Tian H, Qiao H, et al. Wind-induced vibration control and parametric optimization of connected high-rise buildings with tuned liquid-column-damper–inerter [J]. Engineering Structures, 2021, 226. 10.1016/j.engstruct.2020.111352.
[38] Fu G, Quan Y, Gu M, et al. Experimental Investigation of Unsteady Aerodynamic Forces and Vortex-Induced Aeroelastic Effects of a Slender Structure in Uniform and Turbulent Flows [J]. International Journal of Structural Stability and Dynamics, 2023, 23(04): p. 2350040. 10.1142/s0219455423500402.
[39] 宋微微, 梁枢果, 邹良浩, 等. 超高层建筑气动弹性效应双向受迫振动风洞试验研究[J]. 建筑结构学报, 2015, 36(11): 84-91.
SONG Wei-wei, LIANG Shu-guo, ZOU Liang-hao, et al. Investigation on wind-induced aero-elastic effects of super high-rise building by bi-axial forced vibration wind tunnel test [J]. Journal of Building Structures, 2015, 36(11): 84-91.
[40] Chen Z, Huang H, Tse K T, et al. Characteristics of unsteady aerodynamic forces on an aeroelastic prism: A comparative study [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 205: p. 104325. https://doi.org/10.1016/j.jweia.2020.104325.

PDF(2167 KB)

Accesses

Citation

Detail

段落导航
相关文章

/