双向循环荷载下橡胶砾石-土工格栅界面剪切特性

张大伟1, 钱振豪2, 冯忞1, 刘飞禹2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 199-209.

PDF(5465 KB)
PDF(5465 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 199-209.
土木工程

双向循环荷载下橡胶砾石-土工格栅界面剪切特性

  • 张大伟1,钱振豪2,冯忞1,刘飞禹*2
作者信息 +

Shear characteristics of rubber gravel geogrid interface under bidirectional cyclic loading

  • ZHANG Dawei1,QIAN Zhenhao2,FENG Min1,LIU Feiyu*2
Author information +
文章历史 +

摘要

橡胶颗粒与土体混合可作为构筑物基础的轻质填料,并能提高其抗震性能。利用室内动态直剪仪进行了一系列循环荷载下的直剪试验,分析了橡胶砾石颗粒级配、法向循环荷载、循环剪切频率对土工格栅-橡胶砾石界面的剪切应力-剪切位移关系和体变特性。试验结果表明:四种颗粒级配界面剪切应力均随着循环次数的增加而增大,表现出剪切硬化的特征,界面竖向位移也随之增大,表现出剪缩的特征;四种级配土中级配良好GR2表现出最高的界面抗剪强度,其界面最终剪缩量最小;当法向和水平加载频率一致时,界面循环峰值剪切应力随着频率的增加而增大,当法向和水平加载频率不一致时,滞回曲线根据法向和水平加载频率的大下呈现周期性变化;在同一颗粒级配下,筋土界面剪切刚度和界面阻尼比均随着法向循环荷载的增加而增大,界面剪切刚度随着循环次数的增加而增大,界面阻尼比则相反。

Abstract

Rubber granules mixed with soil can be utilized as a lightweight filler to enhance seismic performance. A series of direct shear tests were conducted using a custom-built dynamic direct shear apparatus. The analysis focused on examining the shear stress-shear displacement relationship and the volumetric change characteristics of the geogrid-rubber gravel interface with regard to the rubber gravel particle gradation, normal cyclic loading, and cyclic shear frequency. The test results showed that the interfacial shear stress of the four kinds of granular gradation increased with the number of cycles, which shows the characteristics of shear hardening, and the interface experienced vertical displacement also increases, which shows the characteristics of shear shrinkage; among the four kinds of graded soils, the well-graded GR2 demostrated the highest interfacial shear strength and the least final shear shrinkage; when the normal and horizontal loadings are applied, the interfacial shear stress-shear displacement relationship and body transformation characteristics of geogrid-rubber gravel interface are the same, when the normal and horizontal loading frequencies are consistent, the peak interfacial cyclic shear stress escalated with frequency, when the normal and horizontal loading frequencies are inconsistent, the hysteresis curve varied according to the larger of the normal and horizontal loading frequencies; in the same particle gradation, the interfacial shear stiffness and the interfacial damping ratio of the tensile soil increase with the increase of normal cyclic load, the interfacial shear stiffness increases with the increase of the cycle number, and the interfacial damping ratio increases with the increase of the cycle number, and the interfacial stiffness increases with the increase of the cycle number, and the interfacial stiffness increases with the increase of the cycle number. The interfacial shear stiffness increases with the increase of the number of cycles, contrasting with the damping ratio, which demonstrated an opposite trend.

关键词

岩土工程 / 橡胶砾石 / 双向循环荷载 / 橡胶含量 / 颗粒级配特征 / 动力特性 /

Key words

geotechnical engineering / rubber gravel / bidirectional cyclic loading / rubber conten / particle gradation characteristics / dynamic properties

引用本文

导出引用
张大伟1, 钱振豪2, 冯忞1, 刘飞禹2. 双向循环荷载下橡胶砾石-土工格栅界面剪切特性[J]. 振动与冲击, 2025, 44(2): 199-209
ZHANG Dawei1, QIAN Zhenhao2, FENG Min1, LIU Feiyu2. Shear characteristics of rubber gravel geogrid interface under bidirectional cyclic loading[J]. Journal of Vibration and Shock, 2025, 44(2): 199-209

参考文献

[ 1 ] 马飞, 赵成勇, 孙启鹏, 等. 重大公共卫生灾害主动限流背景下城市轨道交通网络集成韧性[J].交通运输工程学报, 2023, 23(01): 208-221.
MA Fei, ZHAO Chengyong, SUN Qipeng, et al. Integrated resilience of urban rail transit network with active passengerflow restriction under major public health disasters[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 208-221.
[ 2 ] LIU L L, CAI G J, ZHANG J, et al. Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review[J]. Renewable and Sustainable Energy Reviews, 2020, 126: 109831.
[ 3 ] CHIARO G, PALERMO A, BANASIAK L, et al. Seismic response of low-rise buildings with eco-rubber geotechnical seismic isolation (ERGSI) foundation system: numerical investigation[J]. Bulletin of Earthquake Engineering, 2022, 21: 1-25.
[ 4 ] PITILAKIS D, ANASTASIADIS, A, VRATSIKIDIS A, et al. Large-scale field testing of geotechnical seismic isolation of structures using gravel-rubber mixtures[J]. Earthquake Engineering Structural Dynamics, 2021, 50(10): 2712-2731.
[ 5 ] TASALLOTI A, CHIARO G, MURALI A, et al. Recycling of End-of-Life Tires (ELTs) for Sustainable Geotechnical Applications: A New Zealand Perspective[J]. Applied Sciences, 2021, 11(17): 7824.
[ 6 ] 洪迪甫, 马玉宏, 赵桂峰. 冻融循环与热老化交替作用下天然橡胶力学性能试验[J]. 振动与冲击, 2022, 41(14): 84-91.
HONG Difu, MA Yuhong, ZHAO Guifeng. Experimental study on the performance of natural rubber under alternation effects of freeze-thaw cycles and thermal aging[J]. Journal of Vibration and Shock, 2022, 41(14): 84-91.
[ 7 ] 刘斯宏, 鲁洋, 方斌昕, 等. 土工袋隔震农村民居现场激振测试及效果评价[J].防灾减灾工程学报, 2023, 43(05): 972-978.
LIU Sihong, LU Yang, FANG Binxin, et al. Full⁃scale experimental study on effectiveness of soilbag cushion used as Seismic Isolation in Building Engineering[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(05): 972-978.
[ 8 ] 刘飞禹, 李昊泽, 符军, 等. 橡胶砂级配对混合土体剪切特性影响研究[J].岩土力学, 2023, 44(03): 663-672. 
LIU Feiyu, LI Haoze, FU Jun, et al. Effect of rubber-sand mixtures gradation on shear characteristics of mixed soil [J]. Rock and Soil Mechanics, 2023, 44(03): 663-672.
[ 9 ] PASHA K M S, HAZARIKA H, YOSHIMOTO N. Physical and mechanical properties of Gravel-Tire Chips Mixture (GTCM)[J]. Geosynthetics International, 2018, 26(1): 92-110.
[ 10 ] 陈佳, 庄海洋, 刘启菲, 等. 橡胶-砂混合隔振材料初始变形模量试验研究[J]. 振动与冲击, 2022, 41(14): 299-304.
CHEN Jia, ZHUANG Haiyang, LIU Qifei, et al. Undrained tests on the initial deformation modulus of a rubber particle-sand mixture isolation material [J]. Journal of Vibration and Shock, 2022, 41(14): 299-304.
[ 11 ] SENETAKIS K, ANASTASIADIS A, PITILAKIS K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2011, 33(1): 38-53.
[ 12 ] SENETAKIS K, ANASTASIADIS A. Effects of state of test sample, specimen geometry and sample preparation on dynamic properties of rubber–sand mixtures[J]. Geosynthetics International, 2015, 22(4): 301-310.
[ 13 ] TASALLOTI A, CHIARO G, BANASIAK L, et al. Experimental investigation of the mechanical behaviour of gravel-granulated tyre rubber mixtures[J]. Construction and Building Materials, 2021, 273: 121749.
[ 14 ] AMBARAKONDA P, MOHANTY S, SHAIK R. Utilization of quarry waste and granulated rubber mix as lightweight backfill material[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2019, 23(4): 06019001.
[ 15 ] SABERIAN M, LI J, PERERA S T A M, et al. Large-scale direct shear testing of waste crushed rock reinforced with waste rubber as pavement base/subbase materials[J]. Transportation Geotechnics, 2021, 28: 100546.
[ 16 ] FAKHARIAN K, AHMAD A. Effect of anisotropic consolidation and rubber content on dynamic parameters of granulated rubber-sand mixtures[J]. Soil Dynamics and Earthquake Engineering, 2020,141: 106531.
[ 17 ] ZENG Wei-xiang, LIU Fei-yu, ZHU X X, et al. Test and DEM investigation on shear behavior of three-dimensional geogrid–sand interface[J]. Geosynthetics International, 2022, 1-31.
[ 18 ] 刘飞禹, 符军, 王军, 等. 橡胶掺量对格栅–橡胶砂界面宏细观剪切特性影响[J]. 岩土工程学报, 2022, 44(06): 1006-1015.
LIU Feiyu, FU Jun, WANG Jun, et al. Effects of rubber content on macro- and meso-scopic shear characteristics of geogrid-rubber sand interface[J]. Chinese Journal of Geotechnical Engineering, 2022,44(06):1006-1015.
[ 19 ] 刘飞禹, 武文静, 符洪涛, 等. 基于3D打印的立体格栅网筋土界面剪切特性研究[J]. 中国公路学报, 2022, 35(04): 60-68.
LIU Feiyu, WU Wenjing, FU Hongtao, et al. Research on shear behavior of 3D-printed three-dimensional geogrid-sand interfaces[J]. China Journal of Highway and Transport, 2022, 35(04): 60-68.
[ 20 ] 李水江, 童艳光, 刘飞禹, 等. 不同含水率下考虑筋土界面刚度软化的加筋边坡地震响应[J]. 防灾减灾工程学报, 2023, 43(04): 862-870+877.
LI Shuijiang, TONG Yanguang, LIU Feiyu, et al. Seismic response of reinforced soil slope considering interface stiffness softening under different water content [J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(04): 862-870+877.
[ 21 ] 路遥, 肖成志, 罗亚楠, 等. 格栅纵/横肋对筋-土界面拉拔特性的影响研究[J].防灾减灾工程学报, 2022, 42(05): 1069-1075.
Lu Y, Xiao C Z, Luo Y N, et al. Study of the effect of longitudinal and transversal ribs on pullout performance of interface between geogrids and sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(05): 1069-1075.
[ 22 ] LIU F Y, FU J, WANG J, et al. Effect of the particle size ratio on macro-and mesoscopic shear characteristics of the geogrid-reinforced rubber and sand mixture interface[J]. Geotextiles and Geomembranes, 2022, 50(4): 779-793.
[ 23 ] LIU F Y, FU J, WANG J. Ying. Experimental study on cyclic shear characteristics of geogrid and rubber–sand mixture interface[J]. Construction and Building Materials, 2022, 357: 129328.
[ 24 ] YING M J, WANG J, LIU F Y, et al. Analysis of cyclic shear characteristics of reinforced soil interfaces under cyclic loading and unloading[J]. Geotextiles and Geomembranes, 2022, 50(1): 99-115.
[ 25 ] WU M T, TIAN W H, LIU F C, et al. Dynamic behavior of geocell-reinforced rubber sand mixtures under cyclic simple shear loading[J]. Soil Dynamics and Earthquake Engineering, 2023, 164: 107595.
[ 26 ] WANG, J Q, CHANG Z C, XUE J F, et al. Experimental Investigation on the Behavior of Gravelly Sand Reinforced with Geogrid under Cyclic Loading[J]. Applied Science, Applied Sciences, 2021, 11(24): 12152.
[ 27 ] PAIN A, NIMBALKAR S, HUSSAIN M. Applicability of Bouc-Wen Model to Capture Asymmetric Behavior of Sand at High Cyclic Shear Strain[J]. International Journal of Geomechanics,2020,20(6): 06020009.
[ 28 ] 刘方成, 陈璐, 王海东. 橡胶砂动剪模量和阻尼比循环单剪试验研究[J]. 岩土力学, 2016, 37(07): 1903-1913.
LIU Fangcheng, CHEN Lu, WANG Haidong. Evaluation of dynamic shear modulus and damping ratio of rubber-sand mixture based on cyclic simple shear tests[J]. Rock and Soil Mechanics, 2016, 37(07): 1903-1913.


PDF(5465 KB)

Accesses

Citation

Detail

段落导航
相关文章

/