既有上部结构向下增建地下结构抗震性能研究

邬泽1, 卢广2, 庄海洋2, 3, 唐柏赞3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 245-253.

PDF(2065 KB)
PDF(2065 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 245-253.
地震科学与结构抗震

既有上部结构向下增建地下结构抗震性能研究

  • 邬泽1,卢广2,庄海洋*2,3,唐柏赞3
作者信息 +

Seismic performance of existing superstructures downwardly adding underground structures

  • WU Ze1, LU Guang2, ZHUANG Haiyang*2,3, TANG Baizan3
Author information +
文章历史 +

摘要

基于深圳北站广场向下增建城际铁路地下车站结构的实际工程背景,场地土中地下车站附带上部已建结构的地震反应特征、相互作用机理及其破坏机制成为结构抗震性能评价的关键问题。鉴于此,本文采用整体动力时程分析方法建立了土-地下结构-上部结构静、动力耦合非线性动力相互作用的三维精细化数值模型,系统的研究了地下车站附带上部结构、单建地下车站结构、单建地上结构的地震响应规律及其损伤演变过程。结果表明:相比单建地下车站结构,由于受上部结构影响,增建地下车站结构的水平侧向力及其层间位移角均显著增大,且顶、底板地震损伤面积及程度明显加剧;相比单建地上结构,由于受地下车站结构影响,增建地下车站结构的上部结构的变形协调性显著降低,其地震损伤较单建地上结构严重,尤其在中柱与二层楼板连接处。研究成果可为既有上部结构向下增层拓建的科学设计、防震减灾提供支撑和借鉴。

Abstract

Based on the practical engineering background of construction of the subway underground station structure under the Shenzhen North Station Square, the seismic response, dynamic interaction and failure mechanism of the underground station with the existing superstructure in the site soil have become the key issues in the seismic performance evaluation of the structure. Given this, this paper establishes a 3D refined numerical model of static and dynamic coupling nonlinear dynamic interaction of soil-underground structure-superstructure with the method of global dynamic time history analysis. The seismic response and damage evolution process of underground station with superstructure, single underground station structure and single superstructure are systematically investigated. The results show that compared with the single underground station structure, the horizontal lateral force and the inter-story displacement angle of the additional underground station structure are significantly increased due to the influence of the superstructure, and the seismic damage area and its degree of the roof and floor are obviously aggravated. Compared with the single superstructure, due to the influence of the underground station structure, the deformation coordination of the superstructure of the additional underground station structure is significantly reduced, and the seismic damage is more serious than that of the single superstructure, especially at the connection between the column and the second slab. The research results can provide support and reference for the scientific design, earthquake prevention and disaster reduction of the existing superstructure downwardly adding underground structures. 

关键词

土-地下结构-上部结构动力相互作用 / 增建地下结构 / 抗震性能 / 地震损伤 / 时程分析法

Key words

Soil-underground structure-superstructure dynamic interaction / Added underground structure / Seismic performance / Seismic damage / Time history analysis method

引用本文

导出引用
邬泽1, 卢广2, 庄海洋2, 3, 唐柏赞3. 既有上部结构向下增建地下结构抗震性能研究[J]. 振动与冲击, 2025, 44(2): 245-253
WU Ze1, LU Guang2, ZHUANG Haiyang2, 3, TANG Baizan3. Seismic performance of existing superstructures downwardly adding underground structures[J]. Journal of Vibration and Shock, 2025, 44(2): 245-253

参考文献

[1]. TANG Baizan, Yu Bingyan, Zhuang Haiyang, et al. Seismic behavior of irregular underground structures in saturated sand[J]. Soil Dynamics and Earthquake Engineering, 2024,179:108478.
[2]. 唐柏赞, 陈苏, 李小军, 等.粉质黏土—非规则截面地铁车站结构地震变形特性[J]. 中国铁道科学, 2019, 40(05):128-137.
TANG Baizan, CHEN Su, Li Xiaojun, et al. Seismic deformation characteristics of silty clay-irregular section subway station structure [J]. China Railway Science, 2019,40(05):128-137.
[3]. YU Feng, KOU Hailei, GUO Yaobo, et al. Response of shaft friction along existing piles to deep excavation [J]. Geotechnical and Geological Engneering, 2021, 39:2487–2501.
[4]. CHENG Ye, PAN Danguang, CHEN Qingjun, et al. Shaking table test on underground structure-soil-aboveground structure interaction [J]. Tunnelling and Underground Space Technology, 2023,140:105300.
[5]. 陈照, 刘志春, 胡指南, 等. 地下增层拓建施工参数影响数值分析[J]. 国防交通工程与技术, 2021,19(01):22-25+40.
CHEN Zhao, LIU Zhichun, HU Zhizhi, et al. Numerical analysis of the influence of construction parameters on underground storey-adding and extension [J]. National Defense Traffic Engineering and Technology, 2021,19(01):22-25 + 40.
[6]. 邱仓虎, 詹永勤, 秦玉康, 等. 北京市音乐堂改扩建工程的结构设计[J]. 建筑科学, 1999,15(6):28–32.
QIY Canghu, ZHAN Yongqin, QIN Yukang, et al. Structural Design of Reconstruction and Extension Project of Beijing Concert Hall [J]. Architecture Science, 1999,15(6):28-32.
[7]. 文颖文, 胡明亮, 韩顺有, 等. 既有建筑地下室增设中锚杆静压桩技术应用研究[J]. 岩土工程学报, 2013,35(增2):224–229.
WEN Yingwen, HU Mingliang, HAN Shunyou, et al. Study on the application of middle anchor static pressure pile technology in the basement of existing buildings [J]. Journal of Geotechnical Engineering, 2013,35 (Add 2): 224-229.
[8]. AN X, SHAWKY AA, MAEKAWA K. The collapse mechanism of a subway station during the great Hanshin earthquake [J]. Cement and Concrete Composites, 1997,19(3):241-257.
[9]. 崔光耀, 伍修刚, 王明年, 等. 汶川8.0级大地震公路隧道震害调查与震害特征[J]. 现代隧道技术, 2017,54(02):9-16.
CUI Guangyao, WU Xiugang, WANG Mingnian, et al. Seismic damage investigation and seismic damage characteristics of highway tunnels in Wenchuan 8.0 earthquake [J]. Modern tunnel technology, 2017,54(02):9-16.
[10]. TANG BZ, LI XJ, CHEN S, et al. Investigations of seismic response to an irregular-section subway station structure located in a soft clay site [J]. Engineering Structures, 2020,217:110799.
[11]. WEI Wang, HONG Chen, MA Lisiwen, et al. Analysis of Qiaojia earthquake disasters in the Zhaotong area: Reasons for “small earthquakes and major disasters” [J]. Natural Hazards Research, 2023, 3(2):139-145.
[12]. 庄海洋, 程绍革, 陈国兴, 等. 阪神地震中大开地下车站震害机制数值仿真分析[J]. 岩土力学, 2008,(01):245-250.
ZHUANG Haiyang, CHENG Shaoge, CHEN Guoxing, et al. Numerical simulation analysis of seismic damage mechanism of Dakai underground station in Kobe earthquake [J]. Geotechnical mechanics, 2008,(01):245-250.
[13]. 杜修力, 李洋, 许成顺, 等. 1995年日本阪神地震大开地下车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018,40(2):223-236.
DU Xiuli, LI Yang, XU Chengshun, et al. Research progress on seismic damage causes and disaster mechanism analysis of the Dakai underground station in the 1995 Kobe earthquake [J]. Journal of Geotechnical Engineering, 2018,40(2):223-236.
[14]. 张季, 蒋玮, 谭灿星等. SV波斜入射时地铁车站-土-邻近地表框架结构动力相互作用分析[J].  震灾防御技术, 2022,17(04):622-631.
ZHANG Ji, JIANG Wei, TAN Canxing. Analysis on dynamic interaction of subway station-soil-aboveground frame structure under inclined incidence of SV wave[J].  Technology for Earthquake Disaster Prevention, 2022,17(04):622-631.
[15]. Cheng Y, Pan DG, Chen QJ, et al. Shaking table test on underground structure-soil-aboveground structure interaction[J]. Tunnelling and Underground Space Technology, 2023,140:105300.
[16]. 庄海洋, 陈国兴. 对土体动力黏塑性记忆型嵌套面模型的改进[J]. 岩土力学, 2009,30(1):118-122.
ZHUANG Haiyang, CHEN Guoxing. Improvement of dynamic viscoplastic memory nested surface model of soil [J]. Geotechnical Mechanics, 2009,30(1):118-122.
[17]. 庄海洋, 陈国兴, 梁艳仙, 等. 土体动非线性黏弹性模型及其ABAQUS软件的实现[J]. 岩土力学, 2007,20(03):436-442.
ZHUANG Haiyang, CHEN Guoxing, LIANG Yanxian, et al. Dynamic nonlinear viscoelastic model of soil and realization of ABAQUS software [J]. Geotechnical Mechanics, 2007,20(03):436-442.
[18]. ZHUANG Haiyang, ZHAO Chang, CHEN Su, et al. Seismic performance of underground subway station with sliding between column and longitudinal beam [J]. Tunnelling and Underground Space Technology, 2020,102:103439. 
[19]. Lee J, Fenves GL. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of engineering mechanics, 1998,124(8):892-900.
[20]. 张广宇, 庄海洋, 许紫刚, 等. 基于不同地基隔震体系的两层三跨地铁地下车站结构抗震性能分析[J]. 振动与冲击,2023,42(11):27-33+41.
ZHANG Guangyu, ZHUANG Haiyang, XU Zigang, et al. Seismic performance analysis of a two-story, three span subway underground station structure under different foundation isolation cases [J] Journal of Vibration and Shock, 2023,42 (11): 27-33+41.
[21]. 王建宁, 张广宇, 庄海洋, 等.考虑多次余震作用的地下结构抗震性能研究[J]. 振动与冲击,2023,42(17):70-77+174.
WANG Jianning, ZHANG Guangyu,ZHUANG Haiyang, et al. Seismic performance of underground structures considering multiple aftershocks [J] Journal of Vibration and Shock, 2023,42 (17): 70-77+174.
[22]. 庄海洋, 吴祥祖, 陈国兴. 考虑初始静应力状态的土—地下结构非线性静、动力耦合作用研究[J]. 岩石力学与工程学报, 2011,30(S1):3112-3119.
ZHUANG Haiyang, WU Xiangzu, CHEN Guoxing. Study on nonlinear static and dynamic coupling of soil-underground structure considering initial static stress state [J]. Journal of Rock Mechanics and Engineering, 2011,30(S1):3112-3119.
[23]. 楼梦麟, 潘旦光, 范立础. 土层地震反应分析中侧向人工边界的影响[J]. 同济大学学报:自然科学版, 2003.31(07):757-761.
LOU Menglin, PAN Danguang, FAN Lichu. Influence of lateral artificial boundary on seismic response analysis of soil layer [J]. Journal of Tongji University: Natural Science Edition, 2003.31(07):757-761.
[24]. 沈亮, 于跃, 赵维民. 非基岩厂址条件下不同基础形式对核岛厂房地震动力响应的影响分析[J]. 建筑结构, 2022,52(S1):2391-2395.
SHEN Liang, YU Yue, ZHAO Weimin. Analysis of the influence of different foundation forms on the seismic dynamic response of nuclear island plant under non-bedrock site conditions [J]. Building structure, 2022,52 (S1):2391-2395.
[25]. GB 50011-2010. 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
GB 50011-2010. Code for seismic design of buildings [S]. Beijing: China Construction Industry Press, 2010.
[26]. GB/T 51336-2018. 地下结构抗震设计标准[S]. 北京: 中国建筑工业出版社, 2019.
GB/T 51336-2018. Seismic design standard for underground structures [S]. Beijing: China Construction Industry Publishing House, 2019.
[27]. 郭建刚, 王永伟, 庄海洋, 等. 部分预制装配式地铁地下车站结构整体抗震性能研究[J]. 地震工程与工程振动, 2021.41(5):215-224.
GUO Jiangang, WANG Yongwei, ZHUANG Haiyang, et al. Study on the overall seismic performance of partially prefabricated subway underground station structure [J]. Seismic engineering and engineering vibration, 2021.41(5):215-224.

PDF(2065 KB)

Accesses

Citation

Detail

段落导航
相关文章

/