谐波减速器故障特征频率计算方法研究

贾昀昭1, 徐敏强1, 程瑶2, 李玉庆1, 王日新1, 秦春云3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 279-291.

PDF(2656 KB)
PDF(2656 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 279-291.
故障诊断分析

谐波减速器故障特征频率计算方法研究

  • 贾昀昭1,徐敏强1,程瑶2,李玉庆*1,王日新1,秦春云3
作者信息 +

Calculation method for the harmonic drive fault characteristic frequency

  • JIA Yunzhao1, XU Minqiang1, CHENG Yao2, LI Yuqing*1, WANG Rixin1, QIN Chunyun3
Author information +
文章历史 +

摘要

谐波减速器是一种依赖柔性构件的可控变形的传动机构,其主要部件长期受持续变化的交变应力影响,故障风险显著高于常规传动机构。谐波减速器部件的故障位置、运动关系及承载区的时变特性会导致其故障特征频率呈现出区间分布及周期性变化的特点。同时谐波减速器依靠多个旋转部件在狭小空间内的紧密配合实现传动,单一故障的横向传播会导致多种故障特征同时出现,增加了故障定位难度。提出了一种等效方法,通过将柔性轴承在连续瞬态下的运动关系等效为常规轴承的方式明确了柔性轴承故障特征频率的时变规律。给出了刚轮、柔轮、柔性轴承及交叉滚子轴承典型故障特征频率的计算方法。开展了谐波减速器故障模拟试验,基于试验数据对谐波减速器故障特征频率的理论计算结果进行了验证,给出了多种故障模式下的时、频域故障特征。结果表明,试验实测值与理论分析结果相符,利用给出的故障特征分析方法可以获取准确的谐波减速器故障特征频率。

Abstract

Harmonic drive is a transmission mechanism that relies on controllable deformation produced by flexible components, which are subjected to continuous alternating stress. As a result, the risk of failure is significantly higher than that of conventional transmission mechanisms. Changes on the fault location, kinematic relationship, and bearing area may cause interval distribution and periodic transformation of fault characteristic frequency. The running of harmonic drive based on the close coordination of several rotational components in narrow space, the transmission of single fault may cause the appearance of fault characteristics of multiple faults, the fault location is difficult. Therefore, an equivalent method is proposed to clarify the time-varying patterns of flexible bearing fault frequency by equating the kinematic relationship of continuous transient with that of conventional bearing. The calculation procedure of fault characteristic frequency for circular spline, flex-spline, flexible bearing, and cross roller bearing is presented. A fault simulation experiment is conducted to validate the theoretical analysis, fault characteristics for multiple faults are provided. The results show that the experiment results are consistent with the theoretical analysis, and the fault characteristic frequency can be obtained based on the proposed method.

关键词

谐波减速器 / 柔性轴承 / 故障诊断 / 故障特征频率

Key words

harmonic drive / flexible bearing / fault diagnosis / fault characteristic frequency

引用本文

导出引用
贾昀昭1, 徐敏强1, 程瑶2, 李玉庆1, 王日新1, 秦春云3. 谐波减速器故障特征频率计算方法研究[J]. 振动与冲击, 2025, 44(2): 279-291
JIA Yunzhao1, XU Minqiang1, CHENG Yao2, LI Yuqing1, WANG Rixin1, QIN Chunyun3. Calculation method for the harmonic drive fault characteristic frequency[J]. Journal of Vibration and Shock, 2025, 44(2): 279-291

参考文献

[1] GAO H, ZHUANG H, LI Z, et al. Optimization and experimental research on a new-type short cylindrical cup-shaped harmonic reducer [J]. Journal of Central South University, 2012, 19(7): 1869-1882.
[2] JIA Y, LI Y, XU, M, et al. A fault diagnosis scheme for harmonic reducer under practical operating conditions [J]. Measurement, 2024, 227(4): 114234.
[3] LI R, ZHOU G, LI D. Structural design of flexible wheel of harmonic reducer based on efficiency improvement [J]. Mechanical Systems and Signal Processing, 2023, 201: 110677. 
[4] XIONG Y, FANG B, ZHANG J, et al. Subsurface stresses analysis of flexible ball bearing with bendable races in a harmonic reducer by superimposition method [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 236(6): 1244-1259.
[5] YANG C, MA H, ZHANG T, et al. Research on meshing characteristics of strain wave gearing with three different types of tooth profiles [J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(10): 1761-1775.
[6] XIONG Y, ZHU Y, YAN K. Load analysis of flexible ball bearing in a harmonic reducer [J]. Journal of Mechanical Design, 2020, 142(2): 022302. 
[7] HU R, ZHOU G, LI J. A nonlinear torsional vibration model of harmonic gear reducer and the effect of various factors on torsional vibration during start and stop [J]. Journal of Vibration and Control, 2021, 28(11-12): 1536-1549.
[8] GU J, TONG T, HUANG D, et al. Study on torsional vibration of a harmonic driver based on time-varying stiffness caused by manufacturing error [J]. Journal of Vibroengineering, 2021, 23(3): 619-631.
[9] CHEN G, LI H, LIU Y. Double-arc harmonic gear profile design and meshing analysis for multi-section conjugation [J]. Advances in Mechanical Engineering, 2019, 11(5): 1687814019850656.
[10] LI H, YANG S, KONG L, et al. High-Precision angular speed tracking control of gimbal system with harmonic reducer [J]. IEEE Transactions on Industrial Electronics, 2022, 69(8): 8168-8177.
[11] LI Y, TONG B, CHEN W, et al. Performance margin modeling and reliability analysis for harmonic reducer considering multi-source uncertainties and wear [J]. IEEE Access, 2020, 8: 171021-171033.
[12] ZHAO J, YAN S, WU J. Analysis of parameter sensitivity of space manipulator with harmonic drive based on the revised response surface method [J]. Acta Astronautica, 2014, 98: 86-96.
[13] HUANG H, BADDOUR N, LIANG M. Bearing fault diagnosis under unknown time-varying rotational speed conditions via multiple time-frequency curve extraction [J]. Journal of Sound and Vibration, 2018, 414: 43-60.
[14] Yang S, Xiang Y, Long Z, et al. Fault diagnosis of harmonic drives based on an SDP-ConvNeXt Joint Methodology [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3519608.
[15] Zhi Z, Liu L, Liu D, et al. Fault detection of the harmonic reducer based on CNN-LSTM with a novel denoising algorithm [J]. IEEE Sensors Journal, 22(3): 2572-2581.
[16] Liu L, Zhi Z, Yang Y, et al. Harmonic reducer fault detection with acoustic emssion [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3522812.
[17] 康守强,章炜东,王玉静,等. 基于信息融合子域适应的不同工况下谐波减速器故障诊断方法 [J]. 仪器仪表学报,2024, 45(3): 60-71.
Kang Shou-qiang, Zhang Wei-dong, Wang Yu-jing, et al. A fault diagnosis method for harmonic reducers under different operating conditions based on information fusion subdomain adaptation [J]. Chinese Journal of Scientific Instrument, 2024, 45(3): 60-71.
[18] He Y, Chen J, Zhou X, et al. In-situ fault diagnosis for the harmonic reducer of industrial robots via multi-scale mixed convolutional neural networks [J]. Journal of Manufacturing Systems, 2023, 66: 233-247.
[19] 刘斌,陶孟仑,母慢,等. 谐波减速器柔性轴承疲劳寿命及其力学特性分析 [J]. 机械传动,2023,47(2):131-136.
LIU Bin, TAO Meng-lun, MU Man, et al. Analysis on fatigue life and mechanical characteristics of flexible bearings of harmonic reducers [J]. Journal of Mechanical Transmission, 2023, 47(2): 131-136.
[20] 陈帅挥,周思柱,吕志鹏. 谐波减速器柔性轴承的多目标联合优化 [J]. 组合机床与自动化加工技术,2020(10):47-50.
CHEN Shuai-hui, ZHOU Si-zhu, LV Zhi-peng. Multi-objective joint optimization of flexible bearings for harmonic reducer [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020, 10: 47-50.
[21] LI Y, WANG S, YANG Y, et al. Multiscale symbolic fuzzy entropy: An entropy denoising method for weak feature extraction of rotating machinery [J]. Mechanical Systems and Signal Processing, 2022, 162: 108052.
[22] 邱明,牛振华,杜辉,等. 薄壁交叉圆柱滚子轴承最佳径向工作游隙 [J]. 航空动力学报,2018,33(7):1725-1735.
QIU Ming, NIU Zhen-hua, DU hui, et al. Optimum radial working clearance of thin-walled crossed cylindrical roller bearings [J]. Journal of Aerospace Power, 2018, 33(7): 1725-1735.
[23] 郑直,曾魁魁,何玉灵,等. 液压泵和滚动轴承多种样本量的改进多任务故障诊断 [J]. 振动与冲击,2024,43(4):271-278.
Zheng Zhi, Zeng Kui-kui, He Yu-ling, et al. Improved multi-task fault diagnosis of hydraulic pump and rolling bearing with multiple sample sizes [J]. Journal of Vibration and Shock, 2024, 43(4): 271-278.
[24] 何冬康,刘方平,谭顺学,等. 基于MRSVD与LMD的工业机器人交叉滚子轴承故障特征提取 [J]. 机床与液压,2023,51(4):191-196.
HE Dong-kang, LIU Fang-ping, TAN Shun-xue, et al. Fault feature extraction of industrial robot cross roller bearing based on MRSVD and LMD [J]. Machine Toll & Hydraulics, 2023, 54(4): 191-196.
[25] 孙原理,宋志浩. 多物理场迁移相关分析的旋转机械智能诊断方法 [J]. 振动与冲击,2023,42(22):333-344.
Sun Yuan-li, Song Zhi-hao. Intelligent diagnosis method for rotating machinery based on multi-physics field signal transfer correlation analysis [J]. Journal of Vibration and Shock, 2023, 42(22): 333-344.
[26] 张珈源,郭瑜. 基于IAS信号自适应窄带解调的RV减速器摆线轮故障特征提取 [J]. 振动与冲击,2024,43(9):262-266.
Zhang Jia-yuan, Guo Yu. Fault feature extraction of RV reducer cycloidal gear based on adaptive narrowband demodulation of IAS signals [J]. Journal of Vibration and Shock, 2024, 43(9): 262-266.
[27] 刘先增,含典型轮齿损伤的行星齿轮箱故障特征演变机理研究 [D]. 天津:天津大学,2020.
LIU Xian-zeng. Investigation on fault feature evolution of planetary gearbox with typical tooth damages [D]. Tianjin: Tianjin University, 2020.

PDF(2656 KB)

Accesses

Citation

Detail

段落导航
相关文章

/