可控震源含裂纹平板应力强度因子分析与疲劳寿命预测研究

王乔木1, 陈振1, 黄志强1, 敬爽1, 陈亚轩1, 帅军1, 郝磊2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 292-301.

PDF(2694 KB)
PDF(2694 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 292-301.
故障诊断分析

可控震源含裂纹平板应力强度因子分析与疲劳寿命预测研究

  • 王乔木1,陈振*1,黄志强1,敬爽1,陈亚轩1,帅军1,郝磊2
作者信息 +

Stress intensity factor analysis and fatigue life prediction of a seismic vibrator baseplate

  • WANG Qiaomu1, CHEN Zhen*1, HUANG Zhiqiang1, JING Shuang1, CHEN Yaxuan1, SHUAI Jun1, HAO Lei2
Author information +
文章历史 +

摘要

为详细考察含裂纹平板在不同初始裂纹参数下的应力强度因子变化规律以及平板在激振工况下的疲劳裂纹扩展寿命,利用子模型技术建立含不同初始裂纹的平板有限元模型,采用M-积分计算前缘面的应力强度因子,基于Paris公式计算平板在不同应力比下的疲劳寿命。结果表明,平板在工况下的破坏以I型裂纹为主,改变初始裂纹形状、尺寸与预埋深度不会影响裂纹类型;初始裂纹形状变化会影响初始前缘面应力强度因子的分布规律与均衡性,半椭圆形裂纹应力强度因子分布不均衡性更显著,而半圆形裂纹则较均衡,K1值分布规律呈V字形和1/4弧形;初始裂纹预埋越深,起始前缘应力强度因子越大,裂纹扩展驱动力越高;初始裂纹倾斜角度改变,裂纹类型会发生变化;以裂纹穿透工字梁危险处板厚为疲劳失效判断时,裂纹扩展至15.1514mm;三种应力比工况下的平均疲劳寿命与现场统计结果的误差为13.17%。上述分析为可控震源平板的裂纹失效问题与疲劳优化设计提供了参考,具有一定工程意义。

Abstract

In order to investigate the variation rule of stress intensity factor of cracked baseplate under different initial cracking parameters and the fatigue crack growth life of baseplate under excitation vibration condition, the finite element model of the baseplate containing different initial cracks is established by using the sub-modeling technique, and the stress intensity factor of the leading edge surface is calculated by M-integral, and then the fatigue life of the baseplate under different stress ratios is calculated based on the Paris formula. The results show that the damage of baseplates under working conditions is dominated by type I cracks, and changing the initial crack shape, size and pre-embedding depth does not affect the crack type; Initial crack shape variation affects the distribution pattern and balance of stress intensity factor at the starting leading edge, and the unevenness of stress intensity factor distribution is more significant for semi-elliptical cracks, while it is more balanced for semi-circular cracks, with V-shaped and 1/4-arc K1 values, respectively; The deeper the initial crack pre-burial is the higher the stress intensity factor at the starting leading edge and the higher the crack extension driving force; The crack type changes when the initial crack tilt angle is changed; When fatigue failure was judged by crack penetration through the plate thickness at the I-beam hazard, the crack extended to 15.1514 mm; The error between the average fatigue life under three stress ratios and the field statistical results is 13.13%. The above analysis provides a reference for the crack failure problem and fatigue optimization design of the vibrator baseplate, and has certain engineering significance.

关键词

可控震源平板 / 初始裂纹参数 / 应力强度因子 / 疲劳裂纹 / 寿命预测

Key words

Seismic vibrator baseplate / Initial crack parameters / Stress intensity factor / Fatigue crack / Lifetime prediction

引用本文

导出引用
王乔木1, 陈振1, 黄志强1, 敬爽1, 陈亚轩1, 帅军1, 郝磊2. 可控震源含裂纹平板应力强度因子分析与疲劳寿命预测研究[J]. 振动与冲击, 2025, 44(2): 292-301
WANG Qiaomu1, CHEN Zhen1, HUANG Zhiqiang1, JING Shuang1, CHEN Yaxuan1, SHUAI Jun1, HAO Lei2. Stress intensity factor analysis and fatigue life prediction of a seismic vibrator baseplate[J]. Journal of Vibration and Shock, 2025, 44(2): 292-301

参考文献

[1] 欧倩茹. 横波可控震源振动器激发效果与平板齿结构设计[D]. 成都:西南石油大学,2019:3-4.
[2] 彭珣,郝磊. 横波可控震源振动器—大地耦合振动数值模拟[J]. 石油地球物理勘探,2023,58(06):1349-1358.
PENG Xun, HAO Lei. Numerical simulation of shear-wave seismic vibrator-ground coupled vibration system[J]. Oil Geophysical Prospecting,2023,58(6):1349-1358.
[3] 李刚,徐光明,黄志强,等. 可控震源振动器平板高频与低频响应对比研究[C]//2022油气田勘探与开发国际会议(2022IFEDC).2022:8.
[4] 李琴,蒲伟,黄志强,等. 川渝地区可控震源道路激振效果分析[J].工程设计学报,2022,29(06):766-775.
LI Qin, PU Wei, HUANG Zhiqiang. Analysis of road excitation effect of vibroseis in Sichuan and Chongqing area[J]. Chinese Journal of Engineering Design,2022,29(06):766-775.
[5] Zhiqiang Huang, Jun Shuai, Lei Hao, Gang Li, Ruohao Wang, Zhengtao You, Qiaomu Wang. Investigation of radiative characteristics in the near field for shear, vertical and torsional vibroseis source[J]. Soil Dynamics and Earthquake Engineering,2024,Vol.180: 108628.
[6] 黄志强,彭珣,李刚. 可控震源振动器平板-大地接触性质与能量传递研究[J]. 工程设计学报,2019,26(01):102-109.
HUANG Zhiqiang, PENG Xun, LI Gang. Study on contact property and energy transfer between vibrator baseplate and ground[J]. Chinese Journal of Engineering Design,2019,26(01):102-109.
[7] 李刚,徐光明,黄志强,等. 扫描信号激振下振动器-大地耦合动刚度和动阻尼研究[J]. 工程设计学报,2021,28(04):450-457.
LI Gang, XU Guangming, HUANG Zhiqiang. Research on vibrator-ground coupling dynamic stiffness and dynamic damping under excitation of sweep signal[J]. Chinese Journal of Engineering Design,2021,28(04):450-457.
[8] 黄志强,李刚,丁雅萍,等. KZ-28型可控震源振动器平板性能有限元分析[J]. 机械科学与技术,2016,35(11):1673-1678.
HUANG Zhiqiang, LI Gang, DING Yaping. Finite Element Analysis for Dynamic Performances of KZ-28 Vibroseis Vibrator Baseplate[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(11):1673-1678.
[9] 赵仕英. 可控震源振动器失效分析及重锤密封性能研究[D]. 成都:西南石油大学,2017:9-20.
[10] 陈振,周阳,敬爽,等. 震源振动器平板损伤机理及其疲劳寿命预测研究[J]. 工程设计学报,2019,26(06):658-665+674.
CHEN Zhen, ZHOU Yang, JING Shuang. Study on damage mechanism and fatigue life prediction of seismic vibrator baseplate[J]. Journal of Engineering Design, 2019,26(06):658-665+674.
[11] Chen Z, Li T, Xue X, et al. Fatigue Reliability Analysis and Optimization of Vibrator Baseplate Based on Fuzzy Comprehensive Evaluation Method[J]. Engineering Failure Analysis, 2021(6):105357.
[12] Zhen Chen, Senji Zhang, Shulong Nie. Numerical Simulation Study on Welding Residual Stress of baseplate Teeth of the Shear Wave Seismic Vibrator[J]. International Core Journal of Engineering, 2023,09(10):169-174.
[13] 陈振. 可控震源振动器平板疲劳寿命和疲劳可靠性分析研究[D]. 成都:西南石油大学,2016.
[14] BELYTSCHKOT, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering,1999,45(5):601-620.
[15] Dugdale S. Yielding of Steel Sheets Containing Slits[J]. Journal of the Mechanics and Physics of Solids, 1960,8:100-108.
[16] Barenblatt G I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture[J]. Advances in Applied Mechanics, 1962, 7(C):55-129.
[17] Rybicki E F, Kanninen M F.1977a.A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics,9(4):931-938.
[18] 纪东东,张继旺,徐俊生,等.基于扩展有限元法的含损伤深滚压车轴剩余寿命预测[J].中国科学:技术科学, 2023, 53(3):417-429.
Ji D D, Zhang J W, Xu J S, et al. Residual life prediction of a deep-rolled axle with flaws based on the extended finite element method[J]. Scientia Sinica(Technologica),2023,53:417–429.
[19] 杨文猛,蒋玮,王杰. 风力发电机齿轮疲劳裂纹扩展行为研究及寿命预测[J]. 机械强度,2022,44(05):1214-1220.
YANG Wenmeng, JIANG Wei, WANG Jie. Research on fatigue crack propagation behavior and life prediction of wind turbine gear[J]. Journal of Mechanical Strength,2022,44(5):1214:1220.
[20] 张凭,陆山,景鑫,等. 基于晶体塑性的涡轮盘短裂纹扩展模拟方法[J]. 航空动力学报,2022,37(04):684-693.
ZHANG Ping, LU Shan, JING Xin, et al. Simulation method of short crack propagation in turbine disks based on crystal plasticity[J]. Journal of Aerospace Power, 2022,37(04):684-693.
[21] 焦念鹏,宋力,陈永艳,等.复合材料风力机叶片表面裂纹扩展的模拟研究[J].可再生能源,2022,40(09):1195-1201.
JIAO Nianpeng, SONG Li, CHEN Yongyan, et al. Simulation study on surface crack propagation of composite wind turbine blade[J]. Renewable Energy Resources,2022,40(09):1195-1201.
[22] 秦天琦. 基于扩展有限元的T型圆钢管相贯节点高周疲劳裂纹扩展研究[D]. 徐州:中国矿业大学,2022.
[23] 朱琳. 基于XFEM的加筋板结构疲劳裂纹扩展模拟方法研究[D]. 大连:大连理工大学,2021.
[24] 苏玉昆,马涛,赵晓鑫,等. 基于有限元技术的疲劳裂纹扩展方法研究进展[J]. 力学进展,2024,54(02):308-343.
SU Yukun, MA Tao, ZHAO Xiaoxin, et al. Research progress of fatigue crack propagation method based on finite element technology[J]. Advances in Mechanics. ,2024,54(02):308-343.
[25] 王佳丽,李斌. 旋转防喷器壳体疲劳裂纹扩展研究[J]. 应用力学学报,2023,40(04):824-831.
WANG Jiali, LI Bin. Study on fatigue crack propagation of rotary blowout preventer[J]. Chinese Journal of Applied Mechanics,2023,40(04):824-831.
[26] Andrey V. Lebedev;Igor A. Beresnev. Nonlinear distortion of signals radiated by vibroseis sources[J]. Geophysics,2004,Vol.69(4): 968-977.
[27] 张启洞,闫华东,陈诚,等. 基于ABAQUS/FRANC3D的钢轨三维表面裂纹的扩展分析[J]. 兵器装备工程学报,2024,45(02):246-253.
ZHANG Qidong, YAN Huadong, CHEN Cheng. et al. Propagation analysis of rail three-dimensional surface crack based on ABAOUS/FRANC3D[J]. Journal of Ordnance Equipment Engineering,2024,45(02):246-253.
[28] 林海超. 基于扩展有限元的圆环壳疲劳裂纹扩展研究[D]. 镇江:江苏科技大学,2022.
[29] 李岩,冯永志,丁继伟,等. Franc3D裂纹扩展计算中初始裂纹的参数确定[J]. 科学技术创新,2020,(18):33-34.
LI Yan, FENG Yongzhi, DING Jiwei, et al. Determination of initial crack parameters in Franc3D crack propagation calculation[J]. Scientific and Technological Innovation, 2020,(18):33-34.
[30] 郭伟,曹宏瑞,訾艳阳,等. 滚动轴承接触疲劳裂纹建模与扩展规律研究[J]. 中国机械工程,2023,34(16):1891-1899.
GUO Wei, CAO Hongrui, ZI Yanyang, et al. Study on Contact Fatigue Crack Modeling and Propagation Law of Rolling Bearings[J]. China mechanical engineering,2023,34(16):1891-1899.
[31] 陈飞,丁宁,王馨怡,等. 基于XFEM的管道表面裂纹环向扩展数值模拟[J]. 材料保护,2022,55(12):47-54+78.
CHEN Fei, DING Ning, WANG Xinyi, et al. Numerical Simulation of Circumferential Propagation of Surface Cracks on Pipeline Based on XFEM[J]. Materials Protection,2022,55(12):47-54+78.
[32] 武恭. 铝及铝合金材料手册[M]. 科学出版社,1994.
[33] 薛晓芳. 城市轨道交通正交异性钢桥面板疲劳裂纹扩展研究[D]. 重庆:重庆交通大学,2022.
[34] 顾孟奇,朱家才,郭万林,等. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报,2023,44(23):34-57.
GU Mengqi, ZHU Jiacai, GUO wanlin, et al. Prospects for fatigue durability and reliability of reusable launch vehicle structures[J]. Acta Aeronautica et Astronautic Sinica,2023,44(23):34-57.

PDF(2694 KB)

Accesses

Citation

Detail

段落导航
相关文章

/