径向楔形挤压磁流变缓冲器冲击动力学行为

李祝强1, 付本元2, 古毅3, 廖昌荣4

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 30-39.

PDF(2214 KB)
PDF(2214 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 30-39.
冲击与爆炸

径向楔形挤压磁流变缓冲器冲击动力学行为

  • 李祝强*1,付本元2,古毅3,廖昌荣4
作者信息 +

Impact behavior of a radial wedge-shaped squeezed magnetorheological energy absorber

  • LI Zhuqiang*1,FU Benyuan2,GU Yi3,LIAO Changrong4
Author information +
文章历史 +

摘要

多级径向结构可以延长有效阻尼流道长度,但同时也带来流动困难引起的阻塞问题,结合磁流变液在挤压作用下的增强效应,在不改变多级径向基本结构及磁流变阀外观尺寸的基础上,设计了一种磁流变液径向楔形挤压流动型磁流变阀。通过定义“楔形角”并采用微分思想将楔形阻尼通道分为若干微单元,建立微单元模型与“楔形角”的函数关系;基于HerschelBulkley (HB) 本构模型推导“楔形角”与楔形流道内压降的关系;考虑惯性效应和局部损耗,构建了HB-Minor Losses-Inertia (HBMI)一般力学模型;进一步分析了“楔形角”对楔形阻尼流道截面流速、压力梯度、局部损耗的影响;搭建落锤式冲击试验平台开展不同冲击速度和电流下的动力学行为试验研究。结果显示“楔形角”设定在Δδ=2 mm以内缓冲器具有良好的可控性,其动态范围达1.45,最大缓冲力高达236 kN。将试验结果与理论模型进行比较,发现HBMI模型能够准确预测径向楔形挤压磁流变缓冲器(magnetorheological energy absorber ,MREA) 冲击载荷下的动力学行为。

Abstract

In response to the problem of channel blockage caused by the extension of effective damping channels by multi-stage radial structures, combined with the strengthening effect characteristics of the magnetorheological fluid under compression, a radial wedge-shaped squeezed magnetorheological valve is designed without changing the basic structure and appearance dimensions. By defining the "wedge angle" and using differential thinking to divide the wedge damping channel into several microelements, a functional relationship between the microelement model and the "wedge angle" is established. And then the relationship between the "wedge angle" and the pressure drop inside wedge-shaped channels is derived based on the Herschel Bulkley (HB) constitutive model. Considering inertial effects and local losses, a general mechanical model of HB-Minor Losses-Inertia (HBMI) is constructed. Besides, the influence of "wedge angle" on the cross-sectional flow velocity, pressure gradient, and local loss of wedge-shaped channels is conducted. Further, a drop tower test system is build to conduct the dynamic behaviors of the wedge-shaped magnetorheological energy absorber (MREA) under different impact velocities and currents. Results show that the wedge-shaped MREA has good controllability when the "wedge angle" is set within Δδ=2 mm. Its dynamic range is 1.45,and the maximum buffer force is up to 236 kN.Comparing the test results with the theoretical model, it is found that the HBMI model can accurately predict the dynamic behavior of the radial wedge-shaped squeezed MREA under impact load.

关键词

磁流变缓冲器 / 楔形流道 / 挤压流动 / 动力学行为

Key words

magnetorheological energy absorberd / wedge-shaped gap / squeeze flow / impact behavior

引用本文

导出引用
李祝强1, 付本元2, 古毅3, 廖昌荣4. 径向楔形挤压磁流变缓冲器冲击动力学行为[J]. 振动与冲击, 2025, 44(2): 30-39
LI Zhuqiang1, FU Benyuan2, GU Yi3, LIAO Changrong4. Impact behavior of a radial wedge-shaped squeezed magnetorheological energy absorber[J]. Journal of Vibration and Shock, 2025, 44(2): 30-39

参考文献

[1] YANG J, NING D, SUN S S, et al. A semi-activesuspension using a magnetorheological damper with nonlinearnegative-stiffness component[J]. Mechanical Systems andSignal Processing, 2021, 147:107071
[2] 李嘉豪, 张永浩, 杜新新,等.磁流变液阻尼器分阶段建模与流道参数敏感性分析 [J]. 机械工程学报,2022, 58(11):143-155.
LI Jia-hao, ZHANG Yong-hao, DU Xin-xin, et al. On phase modeling and channel parameters sensitivity analysis for magnetorheological fluid damper[J]. Journal of Mechanical Engineering, 2022, 58(11): 143-155.
[3] Xu YW, Xu ZD, Guo YQ, et al. Single input magnetorheological pseudo negative stiffness control for bridge stay cables[J]. Smart Materials and Structures, 2021, 30(1):015032.
[4] 冯志敏, 时云飞, 张刚,等. 斜拉索-磁流变阻尼器非脆弱减振控制器研究[J]. 农业机械学报, 2020, 51(5):411-420 .
FENG Zhi-min, SHI Yun-fei, ZHANG Gang, et al. Design of non-fragile damping controller for stay cable-magnetorheological damper[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5):411-420.
[5] 杨祖龙, 苏有文. 基于磁流变阻尼器与弹性基础隔震耦合建筑的地震响应分析[J]. 地震工程学报,2018,40(5):932-940.
YANG Zu-long, SU You-wen. Seismic response of a coupled building with magneto rheological damper and elastic base isolation[J]. China Earthquake Engineering Journal, 2018, 40(5):932-940.
[6] 赵树恩, 张俊飞, 李玉玲,等. 磁流变液的汽车碰撞缓冲吸能装置设计[J]. 噪声与振动控制, 2016, 36(6):87-91.
ZHAO Shu-en, ZHANG Jun-fei, LI Yu-ling, et al. Design of Vehicle bumper energy absorbers based on magnetorheological fluid[J]. Noise and Vibration Control, 2016, 36(6):87-91.
[7] Archakam P K, Muthuswamy S. Design and simulation of a crash energy absorption system integrated with magneto-rheological absorber[J]. Journal of Vibration Engineering & Technologies, 2021, 9(7): 1635-1656.
[8]  YOON J Y,KANG B H,KIM J H,et al.New control logic based on mechanical energy conservation for aircraft landing gear system with magnetorheological dampers[J]. Smart Materials and Structures, 2020, 29(8): 084003.
[9] 白先旭, 杨森.磁流变半主动落锤冲击缓冲系统的“软着陆”控制试验与分析[J]. 机械工程学报,2021,57(1):121-127.
BAI Xian-xu, YANG Sen. Experimental test and analysis of “soft-landing” control for drop-induced shock systems using magnetorheological energy absorber [J]. Journal of Mechanical Engineering, 2021, 57(1):121-127.
[10] 张广, 汪辉兴, 欧阳青,等. 磁流变缓冲器在火炮后坐中的热流耦合场分[J]. 上海交通大学学报, 2019, 53(4):504-512.
ZHANG Guang, WANG Hui-xing, OUYANG Qing, et al. Thermal and fluid coupling field analysis of MR damper for gun recoil[J]. Journal of Shanghai Jiaotong University, 2019, 53(4):504-512.
[11] Wang K, Tian N, Xie Y, et al. Research on the application of magnetorheological fluids in artillery buffer system [C]//Journal of Physics: Conference Series, 2023, 2460(1):012095.
[12] Pang H, Xuan S, Sun C, et al. A novel energy absorber based on magnetorheological gel[J]. Smart Materials and Structures, 2017, 26(10):105017.
[13] Zheng J, Li Y, Wang J. Design and multi-physics optimization of a novel magnetorheological damper with a variable resistance gap[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(17): 3152-3168.
[14] 董小闵, 邓雄, 王陶,等. 双模式变间隙磁流变阻尼器研究[J]. 振动与冲击, 2023, 42(3):129-138.
DONG Xiao-min, DENG Xiong, WANG Tao, et al. Dual-mode variable clearance MR damper[J]. Journal of Vibration and Shock, 2023, 42(3):129-138.
[15] 杜新新, 甘斌, 简晓春,等. 考虑壁面滑移的磁流变胶泥缓冲器设计理论与落锤冲击试验[J]. 振动与冲击, 2021, 40(8):201-208.
DU Xin-xin, GAN Bin, JIAN Xiao-chun, et al. Design methodology for magnetorheological energy absorbers considering wall slip and falling weight impact tests[J]. Journal of Vibration and Shock, 2021, 40(8):201-208.
[16] 赵丹侠, 廖昌荣, 刘琼,等. 基于多级径向流动模式的磁流变液减振器设计理论与试验研究[J]. 铁道学报, 2012, 34(2):41-46.
ZHAO Dan-xia, LIAO Chang-rong, LIU Qiong, et al. Design theory of magnetorheological fluid shock absorber based on multi-radial flow mode and experimental tests[J]. Journal of the China Railway Society, 2012, 34(2):41-46.
[17] 付本元, 张贤明, 刘驰等.径向节流型磁流变胶泥缓冲器冲击动力学行为[J]. 铁道学报, 2012, 34(2):41-46.
FU Ben-yuan, ZHANG Xian-ming, LIU Chi, et al. Impact dynamic behavior of radial throttling MR mastic buffer[J]. Journal of Vibration and Shock, 2022, 41(17):177-184, 230.
[18] 胡国良, 邓英俊, 冯海波,等. 内置磁流变阀对磁流变阻尼器动力性能的影响[J]. 交通运输工程学报, 2021, 21(3):289-299.
HU Guo-liang,DENG Ying-jun,FENG Hai-bo,et al. Effect of inner magnetorheological valve on dynamic performance of
magnetorheological damper[J]. Journal of Traffic and
Transportation Engineering, 2021, 21(3):289-299.
[19] Ren J, Zhou F, Wang N, et al. Multi-objective optimization design and dynamic performance analysis of an enhanced radial magnetorheological valve with both annular and radial flow paths[C]//Actuators, 2022, 11(5):120. 
[20] Hu G, Qi H, Zheng K, et al. esign and performance evaluation of a magnetorheological valve with mosquito-coil-plate fluid flow channels[J]. Sensors and Actuators A: Physical, 2022, 347: 113983.
[21] 李祝强, 廖昌荣, 付本元,等. 基于多级径向节流与柱状波纹压溃的碰撞盒研究[J]. 振动与冲击, 2018, 37(3):14-21. 
LI Zhu-qiang, LIAO Chang-rong, FU Ben-yuan, et al.  Crash-boxes based on elastic cement's multi-stage radial flow and crushable cylindrical-corrugated components[J]. Journal of Vibration and Shock, 2018, 37(3):14-21.
[22] Fu B , Liao C , Li Z ,et al. Impact behavior of a high viscosity magnetorheological fluid-based energy absorber with a radial flow model[J]. Smart Material Structures, 2017, 26(2):025025.
[23] Xie L, Choi Y T, Liao C R, et al. Characterization of stratification for an opaque highly stable magnetorheological fluid using vertical axis inductance monitoring system[J]. Journal of Applied Physics, 2015, 117(17):1227-1232.
[24] MAO M,HU W,CHOI Y T,et al. Experimental validation of a magnetorheological energy absorber design analysis [J]. Journal of Intelligent Material Systems and Structures, 2014, 25(3):352-363.
[25] 王芳芳, 廖昌荣, 周治江,等. 磁流变胶泥材料的磁控力学行为实验研究[J]. 功能材料, 2014, 45(23):23095-23100.
WANG Fang-fang, LIAO Chang-rong, ZHOU Zhi-jiang, et al. Experimental investigation on magnetic-control mechanical behavior of magnetorheological elasticity cement[J]. Journal of Functional Materials, 2014, 45(23):23095-23100.
[26] F M White. Fluid mechanics. 4th edition [M]. Singapore: McGraw-Hill, 1986.
[27] Fu B, Liao C, Xie L, et al. A theoretical analysis on crush characteristics of corrugated tube under axial impact and experimental verification [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42:1-13.
[28] Zhuqiang Li, Benyuan Fu, Changrong Liao. Dynamic behavior of a magnetorheological fluid radial-flow-based energy absorber considering apparent slip boundary condition [J]. Journal of Intelligent Material Systems and Structures, 2023, 34(10): 1145-1158.

PDF(2214 KB)

149

Accesses

0

Citation

Detail

段落导航
相关文章

/