利用压缩气体驱离流体是密闭容器清理的一种重要方式,其工作过程中将形成复杂的气液两相流动现象并诱发剧烈噪声。为揭示密闭容器清吹过程中复杂流动发展演化规律及流噪声形成机理,优化密闭容器清吹参数从而控制清吹噪声,本文基于VOF表面跟踪法和Lighthill声类比原理,采用CFD-CA相结合的混合模拟方法对密闭容器清吹过程的流场和声场进行仿真分析和优化研究。研究结果表明:密闭容器清吹过程中,高速气体射流将对液面产生剧烈的冲击作用而形成漩涡、液体破碎和气泡弥散等流态,诱发复杂的不稳定气液两相流动,从而激发剧烈的噪声并影响清吹效率。进气压力将直接影响密闭容器内部流场特性,并进一步影响清吹效率和噪声特性,当进气压力高于1MPa,气体将沿罐壁进入排水管路形成不稳定的气液混合流动,导致有效排除流量和清吹效率降低。噪声随进出口压差升高而增加,进气压力1MPa时总声压级比0.3MPa时高10dB,为兼顾清吹效率和噪声特性,采用0.5MPa的气体压力具有较好综合性能。根据密闭容器内部流场特性对进气结构进行优化,采用倾斜进气和倾斜渐扩进气结构,清吹效率分别提高了15%和27%,总声压级降低了10dB和7dB。
Abstract
The using of compressed gas to drive away the fluid is an important way to clean up the confined container, which can form complex gas-liquid two-phase flow and induce severe noise. In order to reveal the evolution law of the complex flow and formation mechanism of flow noise in the cleaning process of confined vessel, optimize the blowing parameters to control blowing noise, the hybrid simulation method combined with CFD-CAA was used to optimize the flow-sound field of confined container blowing process. The results show that the high-speed gas jet have a severe impact on the liquid surface, forming flow patterns such as vortex, liquid fragmentation and bubble dispersion, and induce complex unstable gas-liquid two-phase flow. so as to stimulate intense noise and affect the cleaning efficiency. When inlet pressure is higher than 1MPa, the gas enter the drainage pipe along the tank wall to form an unstable gas-liquid mixed flow, resulting in the effective removal flow and blowing efficiency reduced. The total sound pressure level at 1MPa is 10dB higher than that at 0.3MPa. In order to take into account the cleaning efficiency and noise characteristics, 0.5MPa gas pressure has better comprehensive performance. By adopting inclined intake and extended intake structure, the intake structure is optimized according to the simulation. The cleaning efficiency is increased by 15% and 27% respectively, and the total sound pressure level is reduced by 10dB and 7dB.
关键词
清吹排污 /
流噪声 /
噪声优化 /
数值模拟 /
Lighthill声类比 /
{{custom_keyword}} /
Key words
Blowing and discharging /
flow noise /
noise optimization /
numerical simulation /
Lighthill acoustic analogy
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GB/12348—2008. 工业企业厂界环境噪声排放标准[S].北京: 中国环境科学出版社,2008.
GB/12348-2008. Environmental noise emission standard for industrial enterprises [S]. Beijing: China Environmental Science Press, 2008
[2] 宋晓东,杨清轩,苏 强等.国外常规潜艇未来发展方向研究[J]. 舰船科学技术,2015, 37(11):8-13.
Song Xiaodong, Yang Qingxuan, Su Qiang, etc. Research on development direction of foreign SSK [J]. Ship Science and Technology, 2015,37 (11): 8-13.
[3] 李 未. 水下厕所排污试验装置设计及其试验研究[D]. 武汉工程大学, 2017.
Li Wei. Design and experimental study of sewage discharge test device for underwater toilet [D]. Wuhan University of Engineering, 2017.
[4]Arghode V K, Gupta A K. Jet characteristics from asubmerged combustion system[J].Applied Energy, 2012, 89(01):246-253.
[5] 赵洋. 气液两相管路流场及声学特性研究[D]. 哈尔滨工程大学,2020.
Zhao Yang. Research on flow field and acoustic characteristics of gas-liquid two-phase pipeline [D]. Harbin University of Engineering, 2020.
[6] 廖庆斌,王晓东,马士虎. 舰船管路系统振动和噪声源机理分析[J]. 舰船科学技术,2010,32(04): 23-27.
Liao Qingbin, Wang Xiaodong, Ma Shihu. Mechanism analysis of noise and vibration sources on naval piping system [J]. Ship Science and Technology, 20101.32 (04): 23-27.
[7] 蔡标华,肖龙洲,方 超等. 水下吹除排污过程气体射流噪声数值模拟[J]. 中国舰船研究,2019,14(06): 98-103.
Cai Bianhua, Xiao Longzhou, Fang Chao, etc. Numerical simulation of gas jet noise in the underwater blowdown process [J]. Chinese Journal of Ship Research, 2019, 14 (06): 98-103.
[8] 邢 允,张 凌,胡秋旭等. 吹除过程中流动与噪声的数值模拟与实验验证[J]. 工程热物理学报,2019, 40(08): 1799-1805.
Xing Yun, Zhang Ling, Hu Qiuxu, etc. Numerical Simulation and Experimental Verification of Flow and Noise in Blowing Process [J]. Journal of Engineering Thermophysics, 2019, 40 (08): 1799-1805.
[9] 蔡 朋,胡秋旭,李 伟等. 淹没两相射流过程噪声特性数值模拟[J]. 流体机械,2020,48(01): 36-41.
Cai Peng, Hu Qiuxu, Li Wei, etc. Numerical Simulation of Noise Characteristics of Submerged Two-phase Jet Process [J]. Fluid Machinery, 2020548 (01): 36-41
[10] 张建华,黄海峰,刘广旭等. 基于VOF模型的潜艇主压载水舱吹除特性数值模拟[J]. 兵器装备工程学报,2022, 43(07): 234-239.
Zhang Jianhua, Huang Haifeng, Liu Guangxu, etc. Numerical simulation of blowing characteristics of submarine main ballast tanks using VOF model [J]. Journal of Ordnance Equipment Engineering, 2022 743 (07): 234-239.
[11] 羿 琦,林博群,张万良等. 基于短吹模型的主压载水舱吹除仿真与实验验证[J]. 中国舰船研究,2022, 17(3):246–252.
Luo Qi, Lin Boqun, Zhang Wanliang, et al. Simulation and experimental verification of main ballast tank blowing based on short circuit blowing model [J]. Chinese Journal of Ship Research, 2022jue 17 (3): 246Mel 252.
[12] 马士虎,夏 巍,王英伟等. 高压空气复杂管网系统水舱吹除仿真研究[J]. 舰船科学技术,2023,45(14):53-57.
Ma Shihu, Xia Wei, Wang Yingwei, etc. Simulation research of water tank blow-off in complex high pressure air pipe network system [J]. Ship Science and Technology, 2023, 554 (14): 53-57.
[13] 杨 唱,孙 冰,方 杰. 航天器贮箱出流过程液体晃动及防晃[J]. 航空动力学报,2018,33(12): 3065-3072.
Yang Song, Sun Bing, Fang Jie. Liquid sloshing and anti-sloshing of spacecraft tank during outflow [J]. Journal of Aerospace Power, 2018 .33 (12): 3065-3072.
[14] SHREEHARSHA H V,SHIVAKUMAR S G,MALLIKARJUN S G. Simulation of Sloshing in Rigid Rectangular Tank and a Typical AircraftDrop Tank[J]. Journal of Aeronautics & Aerospace Engineering, 2017, 06(01).
[15]Ubertini, Filippo, Cavalagli,et al.Experimental and numerical analysis of energy dissipation in a sloshing absorber[J]. Journal of Fluids and Structures, 2017, 68:466-481.
[16] 于连杰,赵伟文,万德成. 含水气界面水动力噪声计算方法研究与应用进展综述[J]. 中国舰船研究,2022,17(05): 85-102..
Yu Lianjie, Zhao Weiwen, Wan Decheng. Research progress and application of computational method for
hydrodynamic noise from air-water interface [J]. Chinese Journal of Ship Research, 2022, 17 (05): 85-102.
[17] Zhang F , Zhu L F , Shi X T ,et al.Influence of pump noise on the health of fish in a large pumping station[J].Journal of Hydrodynamics, 2022, 34(3):522-531.
[18] Zhao CS, Chai K, Simulation study on the flow-induced vibration and noise in marine centrifugal pumps[J], JOURNAL OF VIBRATION AND CONTROL, 2023.
[19] Zhang B, Shang D, Liu J,et al.Numerical simulation of underwater flow noise from open cavity under different attack angles[C]//2016 IEEE/OES China Ocean Acoustics (COA). Harbin:IEEE, 2016.
[20] 朱明明,黄 彪,王国玉等. 非定常空化流致噪声的数值模拟[J]. 排灌机械工程学报,2017,35(11): 933-940.
Zhu Mingming, Huang Biao, Wang Guoyu, etc. Numerical investigation on noise induced by unsteady cavitating flow over hydrofoil [J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35 (11): 933-940.
[21] 司乔瑞,盛国臣,衡亚光等. 基于Lighthill声类比理论的离心泵流动诱导噪声的数值模拟[J]. 振动与冲击,2018, 37(23):84-90+97.
Si Qiorui, Sheng Guochen, Heng Yaguang, etc. Numerical simulation for flow-induced noise in a centrifugal pump based on Lighthill acoustic analogy theory [J]. Journal of Vibration and Shock, 2018. 37 (23): 84-90. 97.
[22] Zhang YongOu, Zhang Tao et al, Flow-induced Noise Simulation Based on LES/Lighthill Hybrid Method[J]. Applied Mechanics and Materials, 614(2014):428-431.
[23] Liu Yongwei, Shang Dejiang, Li Qie,et al, The Investigation on Calculating and Measuring Fluid Noise from Underwater Viscous Elastic Materials[J], OCEANS 2016 MTS/IEEE MONTEREY ,2016.
[24] Rosler R S, Stewart G H. Impingement of gas jets on liquid surfaces[J]. Journal of Fluid Mechanics, 1968, 31(01): 163-174.
[26] 张也影. 流体力学[M]. 北京: 高等教育出版社. 1999: 333-340.
Zhang Yiying. Fluid mechanics [M]. Beijing: Higher Education Press. 1999: 333-340.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}