高速动车组惯容器弹性架悬转向架横向稳定性研究 

祁亚运1, 敖鹏1, 戴焕云2, 石怀龙2, 刘华1, 贺星1, 李慷3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 65-72.

PDF(2531 KB)
PDF(2531 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 65-72.
振动理论与交叉研究

高速动车组惯容器弹性架悬转向架横向稳定性研究 

  • 祁亚运1,敖鹏1,戴焕云*2,石怀龙2,刘华1,贺星1,李慷3
作者信息 +

Lateral stability of the inerter elastic frame suspension bogie used in high-speed EMUs

  • QI Yayun1,AO Peng1,DAI Huanyun*2,SHI Huailong2,LIU Hua1,HE Xing1,LI Kang3
Author information +
文章历史 +

摘要

惯容器作为一种新型结构控制元件被广泛应用于结构振动系统中,但在转向架电机悬挂中却研究较少。建立3种惯容器-刚度-阻尼(inerter-stiffness-damping,ISD)电机架悬转向架横向动力学模型,采用光滑拟合曲线模拟等效锥度,用实测轨道谱作为转向架系统激励输入,以构架端部加速度滑移均方根综合值作为优化目标函数,通过减法平均优化器优化算法(SABO)对ISD架悬参数和原有架悬结构(suspension structure,SD)参数进行优化并分析其稳定性。结果表明,ISD串并联结构降低转向架振动响应效果最好,在新轮新轨匹配和车轮镟修后期条件下,其稳定性最佳,线性临界速度较SD结构可提升215.6km/h。ISD三并联结构各稳定性指标略低于SD结构,而ISD三串联结构会恶化转向架横向稳定性,降低其临界速度,同时,其综合均方根和最大均方根对速度变化最敏感,不利于改善转向架横向稳定性。研究结果可为高速动车组电机弹性架悬设计提供参考。

Abstract

Inerters are widely used as a new type of structural control element in structural vibration systems, but are less studied in bogie motor suspensions. Three kinds of inerter-stiffness-damping (ISD) motor frame suspension bogie lateral dynamics models are established. The equivalent conicity is simulated by smooth fitting curves, the measured track spectrum is used as the excitation input of the bogie system. The integrated value of the root-mean-square (RMS) of the acceleration at the end of the frame is used as the optimization objective function. The parameters of ISD frame suspension and the original frame suspension structure (SD) are optimized and their stability is analyzed by the subtractive averaging optimizer optimization algorithm (SABO). Parameters of the ISD frame suspension and the original frame suspension structure (SD) through the subtractive average optimizer algorithm (SABO) and analyze their stability. The results showed that the ISD tandem-parallel structure has the best effect in reducing the vibration response of the bogie, and its stability is the best under the new wheel-rail matching and the late stage after wheel reprofiling, and its linear critical speed can be increased by 215.6 km/h compared with that of the SD structure. The ISD triple-parallel structure has stability indexes that are slightly lower than that of the SD structure, and the ISD triple-tandem structure deteriorates the lateral stability of the bogie and reduces its critical speed. At the same time, its integrated root-mean-square and maximal  root-mean-square are lower than that of the original frame suspension structure (SD). Its integrated  root-mean-square and maximum  root-mean-square are the most sensitive to speed changes, which is not conducive to improving the lateral stability of the bogie. The results of the study can provide a reference for the design of motor elastic suspensions for high-speed EMUs.

关键词

高速动车组 / 转向架横向稳定性 / 弹性架悬 / 惯容器 / 参数优化.

Key words

high speed EMUs / bogie lateral stability / elastic frame suspension / inerter / parameter optimization

引用本文

导出引用
祁亚运1, 敖鹏1, 戴焕云2, 石怀龙2, 刘华1, 贺星1, 李慷3. 高速动车组惯容器弹性架悬转向架横向稳定性研究 [J]. 振动与冲击, 2025, 44(2): 65-72
QI Yayun1, AO Peng1, DAI Huanyun2, SHI Huailong2, LIU Hua1, HE Xing1, LI Kang3. Lateral stability of the inerter elastic frame suspension bogie used in high-speed EMUs[J]. Journal of Vibration and Shock, 2025, 44(2): 65-72

参考文献

[1] 徐坤,曾京,黄彩虹, 等. 高速动车电机架悬参数对转向架动力学性能影响研究[J]. 振动与冲击, 2018, 37(20): 95-100+108.
XU Kun,ZENG Jing,HUANG Caihong,et al. The influence of motor elastic bogie-suspended parameters of high-speed vehicles on dynamic performance of bogies[J]. Journal of Vibration and Shock, 2018, 37(20): 95-100+108.
[2] 黄彩虹, 宋春元, 范军, 等. 电机弹性架悬高速转向架蛇行频率跳变现象分析[J]. 铁道学报, 2021,43(10): 20-28.
HUANG Caihong, SONG Chunyuan, FAN Jun, et al. Analysis on hunting frequency jump phenomenon of high-speed bogies with elastic motor suspension[J]. Journal of the China Railway Society, 2021,43(10): 20-28.
[3] WEI L, ZENG J, HUANG C, et al. Hunting stability and dynamic stress analysis of a high-speed bogie using elastic-suspended motors as dynamic vibration absorber[J]. Vehicle System Dynamics, 2024: 1-23.
[4] LI Y, HUANG C, ZENG J, et al. Effect of motor suspension parameters on bifurcations for a nonlinear bogie system[J]. Vehicle System Dynamics, 2024: 1-18.
[5] 张卫华, 罗仁, 宋春元, 等. 基于电机动力吸振的高速列车蛇行运动控制[J]. 交通运输工程学报, 2020, 20(5): 125-134.
ZHANG Weihua, LUO Ren, SONG Chunyuan, et al. Hunting control of high-speed train using traction motor as dynamic absorber[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 125-134.
[6] 祁亚运, 戴焕云, 高浩, 等. 考虑驱动系统的高速列车动力学分析[J]. 振动工程学报, 2019, 32(01): 176-183.
QI Yayun, DAI Huanyun, GAO Hao, et al. Dynamic analysis of high-speed train with considering drive system[J]. Journal of Vibration Engineering, 2019, 32(01): 176-183.
[7] 冯遵委, 胡晗达, 杨震寰, 等.基于电机架悬的转向架稳定性与控制策略[J]. 交通运输工程学报, 2024,24(02): 152-165.
FENG Zunwei, HU Handa, YANG Zhenhuan, et al. Bogie stability ans control strategy based on motor suspensions[J]. Journal of Traffic and Transportation Engineering, 2024,24(02): 152-165.
[8] Zhang H, Ling L, Stichel S, et al. Integration of bio-inspired limb-like structure damping into motor suspension of high-speed trains to enhance bogie hunting stability[J]. Railway Engineering Science, 2024: 1-20.
[9] SMITH M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on automatic control, 2002, 47(10): 1648-1662.
[10] Kakou P, Gupta S K, Barry O. A nonlinear analysis of a Duffing oscillator with a nonlinear electromagnetic vibration absorber–inerter for concurrent vibration mitigation and energy harvesting[J]. Nonlinear Dynamics, 2024, 112(8): 5847-5862. 
[11] SHEN Y, CHEN L, YANG X, et al. Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension[J]. Journal of Sound and Vibration, 2016, 361: 148-158.
[12] Hang X, Li H, Cheng J, et al. Adaptive stability mechanism of high-speed train employing parallel inerter yaw damper[J]. Vehicle System Dynamics, 2023, 61(1): 38-57.
[13] 王勇, 李昊轩, 姜文安, 等. 高速列车车下惯容悬吊设备动态特性研究[J]. 振动与冲击, 2022, 41(02): 246-254.
WANG Yong, LI Haoxuan, JIANG Wenan, et al. Dynamic characteristic of an underframe inerter-based suspended equipment for high speed trains[J]. Journal of Vibration and Shock, 2022, 41(02):246-254.
[14] LEWIS T D, LI Y, TUCKER G J, et al. Improving the track friendliness of a four-axle railway vehicle using an inertance-integrated lateral primary suspension[J]. Vehicle System Dynamics, 2021, 59(1): 115-134.
[15] SHEN Y J, CHEN L, LIU Y L, et al. Improvement of the lateral stability of vehicle suspension incorporating inerter[J]. Science China Technological Sciences, 2018, 61: 1244-1252.
[16] GUO J, SHI H, LUO R, et al. Bifurcation analysis of a railway wheelset with nonlinear wheel–rail contact. Nonlinear Dynamics, 2021, 104(2): 989-1005.
[17] International Union of Railway.Testing and approval of railwayvehicles from the point of view of their dynamic behavious-safety-track fatigue-running behavious:UlC 518- 2009[S]. Paris: International Union of Railway, 2009.
[18] 石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报, 2021, 21(1): 36-58.
SHI Huailong, LUO Ren, ZENG Jing. Review on demestic ans foreign dynamic evaluation criteria of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 36-58.
[19] 祁亚运, 戴焕云, 桑虎堂, 等. 高速动车组抗蛇行减振器参数优化研究[J]. 振动工程学报, 2023, 36(05): 1326-1334.
QI Yayun, DAI Huanyun, SANG Hutang, et al. Optimization study of anti-yaw damper parameters for high-speed EMUs. Journal of Vibration Engineering, 2023, 36(05): 1326-1334.
[20] 祁亚运, 戴焕云, 干锋. 高速列车车轮型面多目标优化研究[J]. 机械工程学报, 2022, 58(24): 188-197.
QI Yayun, DAI Huanyun, Gan Feng. Optimization of Wheel Profiles for High-speed Trains. Journal of Mechanical Engineering, 2022, 58(24): 188-197.
[21] TROJOVSKÝ P, DEHGHANI M. Subtraction-average-based optimizer: a new swarm-inspired metaheuristic algorithm for solving optimization problems[J]. Biomimetics, 2023, 8(2): 149. 

PDF(2531 KB)

Accesses

Citation

Detail

段落导航
相关文章

/