横向振动下输电塔螺栓节点松动规律试验研究

赵卫平1, 郭新锁1, 王娜1, 徐旸2, 朱彬荣3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 84-93.

PDF(4475 KB)
PDF(4475 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 84-93.
振动理论与交叉研究

横向振动下输电塔螺栓节点松动规律试验研究

  • 赵卫平*1,郭新锁1,王娜1,徐旸2,朱彬荣3
作者信息 +

Experimental study on the loosening of the bolted joints of a transmission tower under transverse vibration

  • ZHAO Weiping*1,GUO Xinsuo1,WANG Na1,XU Yang2,ZHU Binrong3
Author information +
文章历史 +

摘要

输电塔长期受到风动荷载、导线舞动荷载等振动荷载作用,导致节点螺栓松动。为研究输电塔螺栓节点在横向振动荷载作用下的螺栓松动规律,通过光纤光栅螺栓进行了6组螺栓角钢搭接节点和3组螺栓群角钢对接连接节点共计32个试件的横向振动试验,研究了荷载幅值、振动频率、螺栓预紧扭矩等参数对螺栓松动的影响,分析了螺栓在动力荷载作用下的力学性能。结果表明:螺栓松动在振动初始时刻预紧力缓慢下降,之后经历预紧力快速下降阶段,最后预紧力损失速度逐渐变缓并趋于稳定;对于角钢搭接节点和螺栓群角钢对接连接节点,随着振动幅值的增加,螺栓松动程度增加,随着预紧扭矩的增大,螺栓松动趋势减小,振动频率对螺栓松动的影响较小;螺栓安装间隙对搭接节点螺栓松动几乎无影响,搭接节点远离加载端位置的螺栓更易松动,螺栓群角钢对接连接节点靠近加载端的螺栓相比中间位置的螺栓更易松动。试验结果为工程中螺栓预紧力监测和螺栓防松设计提供参考,保证节点承载力。

Abstract

The transmission tower is subjected to vibration loads such as wind load and conductor galloping load for a long time, which leads to the loosening of joint bolts. In order to study the bolt loosening law of bolted joints of transmission tower under transverse vibration load, the transverse vibration tests of 32 specimens including 6 groups of bolted angle steel lap joints and 3 groups of bolt group angle steel butt joints were carried out by fiber grating bolts. The effects of load amplitude, vibration frequency and bolt preload torque on bolt loosening were studied, and the mechanical properties of bolts under dynamic load were analyzed. The results show that the pre-tightening force of bolt loosening decreases slowly at the initial moment of vibration, and then experiences a rapid decline stage of pre-tightening force. Finally, the loss rate of pre-tightening force gradually slows down and tends to be stable. For angle steel lap joints and bolt group angle steel butt joints, with the increase of vibration amplitude, the degree of bolt loosening increases. With the increase of preload torque, the trend of bolt loosening decreases, and the vibration frequency has little effect on bolt loosening. The bolt installation gap has little effect on the bolt loosening of the lap joint. The bolts of the lap joint away from the loading end are more likely to loosen. The bolts of the bolt group angle steel butt joint near the loading end are more likely to loosen than the bolts in the middle position. The test results provide a reference for bolt preload monitoring and bolt anti-loosening design in engineering to ensure the bearing capacity of joints.

关键词

螺栓节点 / 横向振动 / 螺栓松动 / 螺栓预紧力 / 动力试验

Key words

bolted joint / transverse vibration / bolt looseness / bolt pre-tightening force / dynamic test

引用本文

导出引用
赵卫平1, 郭新锁1, 王娜1, 徐旸2, 朱彬荣3. 横向振动下输电塔螺栓节点松动规律试验研究[J]. 振动与冲击, 2025, 44(2): 84-93
ZHAO Weiping1, GUO Xinsuo1, WANG Na1, XU Yang2, ZHU Binrong3. Experimental study on the loosening of the bolted joints of a transmission tower under transverse vibration[J]. Journal of Vibration and Shock, 2025, 44(2): 84-93

参考文献

[1] Huda F, Kajiwara I, Hosoya N, et al. Bolt loosening analysis and diagnosis by non-contact laser excitation vibration tests[J]. Mechanical Systems and Signal Processing, 2013, 40(2): 589–604.
[2] Yan S, Liu W, Song G, et al. Connection looseness detection of steel grid structures using piezoceramic transducers[J]. International Journal of Distributed Sensor Networks, 2018, 14(2):1-10.
[3] 李嘉祥, 张超, 程金鹏, 等. 输电塔螺栓搭接节点滞回性能试验研究[J]. 振动与冲击, 2023, 42(22): 10-18+120.
LI Jiaxiang, ZHANG Chao, CHENG Jinpeng, et al. Experimental study on the hysteretic performance of bolted lap joints of a transmission tower[J]. Journal of Vibration and Shock, 2023, 42(22): 10-18+120.
[4] Yokoyama T, Olsson M, Izumi S, et al. Investigation into the self-loosening behavior of bolted joint subjected to rotational loading[J]. Engineering. Failure Analysis, 2012, 23: 35–43.
[5] Durand J, Neron D, Ladeveze P, et al. Virtual testing for the prediction of damping in joints[J]. Engineering Computations, 2010, 27(5): 621-644. 
[6] Sadati S, Nobari A S, Naraghi T. Identificarion of a nonlinear joint in an elastic structure using optimum equivalent linear frequency response function[J]. Acta Mechanica. 2012, 233(7): 1507-1516.
[7] Rajaei M, Ahmadian H. Development of generalized Iwan model to simulate frictional contacts with variable normal loads[J]. Applied Mathematical Modelling. 2014, 38(15-16): 4006-4018.
[8] Abad J, Medel F J, Franco J M. Determination of Valanis model parameters in a bolted lap joint: Experimental and numerical analyses of frictional dissipation[J]. International Journal of Mechanical Sciences. 2014, 89(1): 289-298.
[9] Jiang Y, Zhang M, Lee C H. A study of early stage self-loosening of bolted joints[J]. Journal of Mechanical Design, 2003, 125(3): 518-526.
[10] Jiang Y, Zhang M, Park T W, et al. An experimental study of self-loosening of bolted joints[J]. Journal of Mechanical Design, 2004(5): 173-178.
[11] Chen J W, Wang H H, Yu Y, et al. Loosening of bolted connections under transverse loading in timber structures[J]. Forests, 2020, 11(8): 816-832.
[12] Liu Z F, Wang B, Li Y, et al. Analysis of self-loosening behavior of high strength bolts based on accurate thread modelling[J]. Engineering Failure Analysis, 2021, 127: 1-12.
[13] Junker G H. Criteria for self-loosening of fasteners under vibration[J]. Sae Transaction, 1969, 44(10): 14-16.
[14] 紧固件横向振动试验方法: GB/T 10431-2008[S]. 北京: 中国标准出版社, 2008.
Fastener transverse vibration test method: GB/T 10431- 2008[S]. Beijing: China Standard Press, 2008.
[15] Ranjan B S.B.C, Vikranth H.N., Ghosal A. A novel prevailing torque threaded fastener and its analysis[J]. Journal of Mechanical Design, 2013, 135(10): 1-9.
[16] Yamamoto A, Kasei S. Investigations on the self-loosening of threaded fasteners under transverse vibration: a solution for self-loosening mechanism[J]. Journal of the Japan Society of Precision Engineering, 1977, 43(4): 470-475.
[17] Croccolo D, Agostinis M D, Vincenzi N. Failure analysis of bolted joints: Effect of friction coefficients in torque- preloading relationship[J]. Engineering Failure Analysis, 2011, 18(1): 364-373.
[18] Takashi Y, Marten O, Izumi S. Investigation into the self-loosening behaviour of bolted joint subjected to rotational loading[J]. Engineering Failure Analysis, 2012, 23: 35-43.
[19] Sakai T. Mechanism for a bolt and nut self-loosening under repeated bolt axial tensile load[J]. Journal of Solid Mechanics and Materials Engineering, 2011, 5(11): 627-639.
[20] Izumi S, Kimura M, Sakai S. Small loosening of bolt-nut fastener due to micro bearing-surface slip:a finite element method study[J]. Journal of Solid Mechanics and Materials Engineering, 2007, 1(11): 1374-1384.
[21] 江文强, 安利强, 王烨迪, 等. 输电铁塔主材角钢的低温拉伸和冲击试验[J]. 振动.测试与诊断, 2017, 37(5): 1040-1045.
JIANG Wenqiang, AN Liqiang, WANG Yedi, et al. Low temperature tensile and impact test of angle steel leg member in transmission tower[J]. Journal of Vibration,Measurement & Diagnosis, 2017, 37(5): 1040-1045.
[22] 于泽通, 刘建华, 张朝前, 等. 轴向交变荷载作用下螺栓联接结构的松动试验研究[J]. 摩擦学学报, 2015, 35(06): 732-736.
YU Zetong, LIU Jianghua, ZHANG Chaoqian, et al. An experimental study on self-loosening of bolted joints under axial vibration[J]. Tribology, 2015, 35(06): 732-736.
[23] Pai N G, Hess D P. Experimental study loosening of threaded fasteners due to dynamic shear loads[J]. Journal of Sound and Vibration, 2002, 253(3): 585-602.
[24] 谢强, 管政, 严乘涌. 1000kV输电塔横风向振动风洞试验研究[J]. 电网技术, 2011, 35(05): 21-26+7.
XIE Qiang, GUAN Zheng, YAN Chengyong. Wind tunnel test on across-wind vibration of 1000kV UHV transmission tower[J]. Power System Technology, 2011, 35(5): 21-26+7.
[25] 赵卫平, 常昊坛, 籍春雷, 等. 横向振动作用下螺栓连接节点松动规律数值模拟[J]. 振动与冲击, 2024, 43(8): 61-69+88.
ZHAO Weiping, CHANG Haotan, JI Chunlei, et al. Numerical simulation of loosening law of bolted joints under lateral vibration[J]. Journal of Vibration and Shock, 2024, 43(8): 61-69+88.
[26] Chen D, Huo L, Li H, et al. A Fiber Bragg Gratting(FBG)- enabled smart washer for bolt pre-load measurement:Design,Analysis, Calibration,and Experimental Validation[J]. Sensors, 2018, 18(8): 2586.
[27] Ren L, Feng T, Ho M, et al. A smart “shear sensing” bolt based on FBG sensors[J]. Measurement, 2018, 122:240-246.
[28] Nassar S A, Housari B A. Study of the effect of hole clearance and thread fit on the self-loosening of threaded fasteners[J]. Journal of Mechanical Design, 2007, 129(6): 1053-1062.
[29] Ritdumrongkul S, Abe M, Fujino Y, et al. Quantitative health monitoring of bolted joints using a piezoceramic actuator- sensor[J]. Smart Materials and Structures, 2004, 13(1): 20-29.
[30] 输电线路杆塔制图和构造规定DL/T 5442-2020[S]. 北京: 中国标准出版社, 2020.
Code for Drawing and construction of transmission line towers DL/T 5442-2020[S]. Beijing: Standards Press of China, 2020.
[31] Oku Y, Sugino M, Ando Y, et al. Fretting fatigue on thread root of premium threaded connections[J]. Tribology International. 2017, 108(12): 111-120.

PDF(4475 KB)

Accesses

Citation

Detail

段落导航
相关文章

/