于微分求积法的两端固结刚性吊杆拉力识别研究

彭涛1, 2, 稂其林2, 陆小龙2, 王涛2, 田仲初1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 94-103.

PDF(1356 KB)
PDF(1356 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (2) : 94-103.
振动理论与交叉研究

于微分求积法的两端固结刚性吊杆拉力识别研究

  • 彭涛1,2,稂其林2,陆小龙2,王涛2,田仲初*1,2
作者信息 +

Tension identification of rigid suspenders with two fixed ends based on the differential quadrature method

  • PENG Tao1,2,LANG Qilin2,LU Xiaolong2,WANG Tao2,TIAN Zhongchu*1,2
Author information +
文章历史 +

摘要

以修正Timoshenko梁理论为基础,提出了一种基于微分求积法的拱桥刚性吊杆拉力识别方法。基于修正Timoshenko梁理论建立刚性吊杆横向振动微分方程,通过选取切比雪夫多项式的根作为节点坐标,利用拉格朗日插值基函数近似表示位移函数;根据微分求积法基本原理计算各阶权重系数,引入边界条件后,将轴向力作用下的修正Timoshenko梁横向振动微分方程的求解转化为线性代数方程组广义代数特征值的计算问题,从而得到刚性吊杆实测基频与拉力之间的精确对应关系。通过数值算例和实桥应用对该方法进行了验证,结果表明,两端固结刚性吊杆的长细比小于222.23时,需要考虑抗弯刚度、剪切变形和转动惯量的影响才能保证拉力识别的精度。提出的基于微分求积法的吊杆拉力识别方法能够应用于各种工况和长细比下的刚性吊杆拉力识别,具有准确、实用和易编程的特点,能够满足实际工程应用要求。

Abstract

Based on the modified Timoshenko beam theory, a method for identifying the tension of rigid suspenders of arch bridges based on differential quadrature method was proposed. Based on the modified Timoshenko beam theory, the lateral vibration differential equation of the rigid suspender is established. By selecting the root of the Chebyshev polynomial as the node coordinate, the Lagrange interpolation basis function was used to approximately represent the displacement function. According to the basic principle of differential quadrature method, the weight coefficients of each order were calculated. After introducing the boundary conditions, the solution of the transverse vibration differential equation of the modified Timoshenko beam under the action of axial force was transformed into the calculation of the generalized algebraic eigenvalue of the linear algebraic equations, so as to obtain the accurate correspondence between the measured fundamental frequency and the tension of the rigid suspender. The method was verified by numerical examples and real bridge applications. The results showed that when the slenderness ratio of the rigid suspenders at both ends is less than 222.23, the influence of bending stiffness, shear deformation and moment of inertia should be considered to ensure the accuracy of tension identification. The proposed identification method of suspender tension based on differential quadrature method can be applied to the tension identification of rigid suspenders under various working conditions and slenderness ratios. It has the characteristics of accuracy, practicality and easy programming, and can meet the requirements of practical engineering applications.

关键词

刚性吊杆 / 修正Timoshenko梁 / 频率法 / 微分求积法 / 拉力识别

Key words

rigid suspender / modified Timoshenko beam / frequency method / differential quadrature method / tension identification

引用本文

导出引用
彭涛1, 2, 稂其林2, 陆小龙2, 王涛2, 田仲初1, 2. 于微分求积法的两端固结刚性吊杆拉力识别研究[J]. 振动与冲击, 2025, 44(2): 94-103
PENG Tao1, 2, LANG Qilin2, LU Xiaolong2, WANG Tao2, TIAN Zhongchu1, 2. Tension identification of rigid suspenders with two fixed ends based on the differential quadrature method[J]. Journal of Vibration and Shock, 2025, 44(2): 94-103

参考文献

[1] 李睿, 李晓章, 郑祥隆, 等. 粒子群算法在基于频率的两端固结吊杆索力识别中的应用[J]. 振动与冲击, 2018, 37(09): 196-201. 
    LI Rui, LI Xiaozhang, ZHENG Xianglong, et al. Application of particle swarm optimization algorithm in frequency-based cable force identification of two-end fixed suspenders[J]. Journal of Vibration and Shock, 2018, 37(09): 196-201.
[2] 孙永明, 孙航, 任远. 频率法计算匀质竖直拉索索力的实用公式[J]. 工程力学, 2013, 30(04): 211-218.
    SUN Yongming, SUN Hang, REN Yuan. Practical formula for calculating cable force of homogeneous vertical cable by frequency method[J]. Engineering Mechanics, 2013, 30(04): 211-218.
[3] 任伟新, 陈刚. 由基频计算拉索拉力的实用公式[J]. 土木工程学报, 2005, 38(11):26-31.
REN Weixin, CHEN Gang. Practical formulas to determine cable tension by using cable fundamental frequency[J]. China Civil Engineering Journal[J], 2005, 38(11): 26-31.
[4] 刘文峰, 应怀樵, 柳春图. 考虑刚度及边界条件的索力精确求解[J]. 振动与冲击, 2003, 22(04): 12-14+25.
LIU Wenfeng, YING Huaiqiao, LIU Chuntu. Precise solution of cable tensile force in consideration of cable stiffness and its boundary conditions[J]. Journal of Vibration and Shock, 2003, 22(04):12-14+25.
[5] 方志, 汪建群, 颜江平. 基于频率法的拉索及吊杆张力测试[J]. 振动与冲击, 2007, 26(09): 78-82.
FANG Zhi, WANG Jianqun, YAN Jiangping. Tension test of cables and suspenders based on frequency method[J]. Journal of Vibration and Shock, 2007, 26(09): 78-82.
[6] AMABILI M, CARRA S, COLLINI L, et al. Estimation of tensile force in tie-rods using a frequency-based identification method[J]. Journal of sound and vibration, 2010, 329(11): 2057-2067.
[7] REBECCHI G, TULLINI N, LAUDIERO F. Estimate of the axial force in slender beams with unknown boundary conditions using one flexural mode shape[J]. Journal of Sound and Vibration, 2013, 332(18): 4122-4135.
[8] 吉伯海, 程苗, 傅中秋, 等. 基于振动频率法的斜拉桥索力测试影响因素[J]. 中南大学学报(自然科学版), 2015, 46(7): 2620-2625.
JI Bohai, CHENG Miao, FU Zhongqiu, et al. Influential factors in cable force measurement of cable-stayed bridges based on vibration frequency method[J]. Journal of Central South University (Science and Technology), 2015, 46(7): 2620-2625.
[9] 张戎令, 杨子江, 朱学辉, 等. 基于频率计算系杆拱桥吊杆张拉力的实用公式[J]. 西南交通大学学报, 2015, 50(05): 823-829.
ZHANG Rongling, YANG Zijiang, ZHU Xuehui, et al. Practical formula for calculating suspender tension of tied arch bridge based on frequency[J]. Journal of Southwest Jiaotong University, 2015, 50(05): 823-829.
[10] 晏班夫, 陈文兵, 孙雁峰, 等. 基于动力刚度法与粒子群优化算法的拉索参数识别[J]. 公路交通科技, 2017, 34(5): 86-94.
YAN Banfu, CHEN Wenbing, SUN Yanfeng, et al. Parameter Identification of Cables Based on Dynamic Stiffness Method and Particle Swarm Optimization[J]. Journal of Highway and Transportation Research and Development 2017, 34(5): 86-94.
[11] XU B, DAN D, ZOU Y. Accurate identification method and practical formula of suspender tension based on tri-segment suspender dynamic model[J]. Engineering Structures, 2019, 200: 109710.
[12] 李东升, 陈琪舟, 魏达, 等. 不确定刚度和边界约束条件下的拉力识别[J]. 振动与冲击, 2022, 41(20): 208-215.
LI Dongsheng, CHEN Qizhou, WEI Da, et al. Axial force identification for uncertain stiffness and boundary constraints[J]. Journal of Vibration and Shock, 2022, 41(20): 208-215.
[13] 刘迅, 卓卫东, 杨宁, 等. 基于改进多重同步压缩算法的斜拉索时变索力识别[J]. 振动与冲击, 2023, 42(12): 212-219.
LIU Xun, ZUO Weidong, YNAG Ning, et al. Identification of time-varying cable force based on an improved multi synchros queezing transform[J]. Journal of Vibration and Shock, 2023, 42(12): 212-219.
[14] 刘红波, 王龙轩, 郭刘潞, 等. 基于深度学习的建筑用短粗拉索索力智能识别[J]. 建筑结构学报, 2023, 44(09): 204-213.
LIU Hongbo, WANG Longxuan, GUO Liulu, et al. Intelligent identification of short and thick cable force for construction based on deep learning[J]. Journal of Building Structures, 2023, 44(09): 204-213.
[15] 王晓琳, 朱茂华, 章鹏, 等. 拱桥圆钢吊杆拉力监测的磁弹传感技术研究[J]. 仪器仪表学报, 2022, 43(09): 140-148.
    WANG Xiaolin, ZHU Maohua, ZHANG Peng, et al. Researchon magnetoelastic sensing technology for tension monitoring of round steel suspenders of arch bridges[J]. Journal of Instrumentation and Meter, 2022, 43(09): 140-148.
[16] 雷旭, 牛华伟, 陈政清, 等. 大跨度钢拱桥吊杆减振的新型电涡流 TMD开发与应用[J]. 中国公路学报, 2015(04): 64-72+89.
    LEI Xu, NIU Huawei, CHEN Zhengqing, et al. Development and application of a new type of eddy current TMD for vibration reduction of suspenders of long-span steel arch bridges[J]. China Journal of Highways, 2015(04): 64-72+89.
[17] 李东升, 李坤朋, 魏达. 不同截面杆件轴力识别的理论与试验验证[J]. 振动工程学报, 2019, 32(01): 151-159.
    LI Dongsheng, LI Kunpeng, WEI Da. Theoretical and experimental verification of axial force identification of different cross-section members[J]. Journal of Vibration Engineering, 2019, 32(01): 151-159.
[18] 汪昌国, 王波. 轴向运动Rayleigh梁固有频率的微分求积法[J]. 机械设计与制造, 2015, (12): 69-72.
    WANG Changguo, WANG Bo. Differential quadrature method for natural frequencies of axially moving Rayleigh beams[J]. Mechanical design and manufacture, 2015, (12): 69-72.
[19] 李智超, 郝育新. 微分求积法求解悬臂L梁固有振动特性研究[J]. 应用数学和力学, 2023, 44(05): 525-534.
    LI Zhichao, HAO Yuxin. Study on the natural vibration characteristics of cantilever L-beams by differential quadrature method[J]. Application of mathematics and mechanics, 2023, 44(05): 525-534.
[20] 赵章泳, 邱艳宇, 王明洋, 等. 弹性边界下圆弧拱的自由振动分析[J]. 振动与冲击, 2016, 35(21): 120-125.
    ZHAO Zhangyong, QIU Yanyu, WANG Mingyang, et al. Free vibration analysis of circular arch under elastic boundary[J]. Journal of Vibration and Shock, 2016, 35(21): 120-125.
[21] 葛仁余, 张佳宸, 刘凡, 等. 微分求积法在计算功能梯度Timoshenko梁临界荷载中的应用研究[J]. 应用力学学报, 2020, 37(06): 2634-2641+2710.
GE Renyu, ZHANG Jiachen, LIU Fan, et al. Application of differential quadrature method in calculating the critical load of functionally graded Timoshenko beams[J]. Chinese Journal of Applied Mechanics, 2020, 37(06): 2634-2641+2710.
[22] 李素贞, LAPUERTA Enrique Cavero. 基于振动测试的张弦结构拉索索力识别[J]. 振动与冲击, 2016, 35(23): 148-152+184.
    LI Suzhen, LAPUERTA Enrique Cavero. Cable tension identification of string structure based on vibration test[J]. Journal of Vibration and Shock, 2016, 35(23): 148-152+184.
[23] 刘向尧, 聂宏, 魏小辉. 多跨的三种梁的横向自由振动模型[J]. 振动与冲击, 2016, 35(08): 21-26.
    LIU Xiangyao, NIE Hong, WEI Xiaohui. Transverse free vibration model of three kinds of multi-span beams[J]. Journal of Vibration and Shock, 2016, 35(08): 21-26. 

PDF(1356 KB)

Accesses

Citation

Detail

段落导航
相关文章

/