多根带状弹簧卷绕与松脱分析

刘丰源, 吴明儿, 项平

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 1-8.

PDF(2015 KB)
PDF(2015 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 1-8.
振动理论与交叉研究

多根带状弹簧卷绕与松脱分析

  • 刘丰源,吴明儿*,项平
作者信息 +

Analysis of winding and loosening of multiple tape springs

  • LIU Fengyuan, WU Ming’er*, XIANG Ping
Author information +
文章历史 +

摘要

为带状弹簧以卷绕伸展的形式应用于空间可展结构时,常出现松脱问题。提出了一种多根带状弹簧卷绕松脱模型:将松脱后的卷绕段分为外部阿基米德螺线状的膨胀区与内部半圆弧状的过渡区,建立应变能解析模型。根据最小势能原理求解了稳定松脱内径与稳定松脱形态,推导了临界中心体半径、稳定端部力与临界端部力。用ABAQUS软件建立多根带状弹簧卷绕松脱的有限元模型,将稳定松脱内径、稳定松脱形态、临界中心体半径与临界端部力的数值分析结果与理论模型计算结果进行比较,并通过试验验证了稳定松脱形态与稳定松脱内径,证明了理论模型的准确性。

Abstract

When tape springs are applied in the form of winding and stretching in spatially deployable structures, the problem of loosening often occurs.Here, a multi-tape spring winding and loosening model was proposed, in which a loosened winding segment was divided into an external Archimedean spiral expansion zone and an internal semi-circular arc transition zone, and a strain energy analytical model was established.According to the principle of minimum potential energy, stable loosening inner diameter and stable loosening form were solved, and critical center body radius, stable tip force and critical tip force were derived.A finite element model for multi-tape spring winding and loosening was established using the software ABAQUS, and the numerical analysis results of stable loosening inner diameter, stable loosening form, critical center body radius and critical tip force were compared with the theoretical model calculation results.Tests were conducted to verify stable loosening form and stable loosening inner diameter, and prove the correctness of the theoretical model.

关键词

带状弹簧 / 多根卷绕 / 松脱形态 / 端部力 / 临界条件

Key words

tape spring / multiple coiled / loosening form / tip force / critical condition

引用本文

导出引用
刘丰源, 吴明儿, 项平. 多根带状弹簧卷绕与松脱分析[J]. 振动与冲击, 2025, 44(3): 1-8
LIU Fengyuan, WU Ming’er, XIANG Ping. Analysis of winding and loosening of multiple tape springs[J]. Journal of Vibration and Shock, 2025, 44(3): 1-8

参考文献

[1] An N, Jia Q, Jin H, et al. Multiscale modeling of viscoelastic behavior of unidirectional composite laminates and deployable structures[J]. Materials & Design, 2022, 219: 110754.
[2] Wang C, Wang Y. The mechanical design of a hybrid intelligent hinge with shape memory polymer and spring sheet[J]. Composites Part B-Engineering, 2018, 134: 1-8.
[3] 杨  慧,王  岩,刘荣强. 考虑横向曲率的超弹性铰链纯弯曲非线性力学建模与实验[J]. 振动与冲击, 2018,37(8): 47-53.
YANG Hui, Wang Yan, LIU Rong-qiang. Nonlinear bending response of tape-spring flexure hinges under pure bending with transverse curvature[J]. Journal of vibration and shock, 2018,37(8): 47-53.
[4] 吴明儿, 张  晗, 牛超哲等. 0.5m口径缠绕肋可展天线反射面型面精度分析与试验研究[J]. 载人航天, 2021, 27(02): 207-214.
WU Ming-er, ZHANG Han, NIU Chao-zhe, et al. Surface Accuracy Analysis and Test on 0. 5m Diameter Wrap-rib Deployable Antenna[J]. Manned Spaceflight, 2021, 27(02):207-214.
[5] Wu D, Wu M, Xiang P, et al. Surface accuracy analysis and optimization design of rib-mesh paraboloidal antenna reflectors[J]. Aerospace Science and Technology, 2022, 129: 107817.
[6] Soykasap O, Karakaya S, Turkmen D. Curved large tape springs for an ultra-thin shell deployable reflector[J]. Journal of Reinforced Plastics and Composites, 2012, 31(10): 691-703.
[7] Underwood C, Viquerat A, Schenk M, et al. InflateSail de-orbit flight demonstration results and follow-on drag-sail applications[J]. Acta Astronautica, 2019, 162: 344-358.
[8] Hoskin A, Viqueraty A. An analysis of a coiled tape spring during compression and extension[C]//3rd AIAA Spacecraft Structures Conference. San Diego, CA, United states: American Institute of Aeronautics and Astronautics Inc, AIAA, 2016.
[9] Viquerat A, Schenk M, Lappas V, et al. Functional and Qualification Testing of the InflateSail Technology Demonstrator[C]//2nd AIAA Spacecraft Structures Conference. Reston, VA, USA : American Institute of Aeronautics and Astronautics, 2015.
[10] Straubel M, Block J, Sinapius M, et al. Deployable composite booms for various gossamer space structures[C]// 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.Denver, CO, United states: American Institute of Aeronautics and Astronautics, 2011.
[11] Okuizumi N, Watanabe A, Ito H. Efficient Storage and Deployment of Tubular Composite Boom Using Spring Root Hinges[J]. Journal of Spacecraft and Rockets, 2021, 58(2): 334-344.
[12] 康雄建, 陈务军, 邱振宇等. 空间薄壁CFRP豆荚杆模态试验及分析 [J]. 振动与冲击, 2017, 36(15): 215-221+258.
KANG Xiong-jian, CHEN Wu-jun, QIU Zhen-yu, et al. Modal tests and analysis for space thin-walled CERP lenticular booms [J]. Journal of vibration and shock, 2017, 36(15): 215-221+258.
[13] 李瑞雄, 陈务军, 付功义. 缠绕肋缠绕过程试验及力学行为分析[J]. 工程力学, 2012, 29(11): 332-338+354.
LI Rui-xiong, CHEN Wu-jun, FU Gong-yi. Experiments and Mechanical Behavior of Wrapping Process of Lenticular Wrapped-Rib[J]. Engineering Mechanics, 2012, 29(11): 332-338+354.
[14] Pehrson N A, Smith S, Brown J, et al. TRAC-Spring Guided Hinges[C]// San Diego, CA, United states: American Institute of Aeronautics and Astronautics Inc, AIAA, 2022.
[15] 杨  慧, 刘  恋, 刘荣强等. 复合材料人形杆压扁过程数值模拟分析[J]. 宇航学报, 2019, 40(05): 570-576.
YANG Hui, LIU Lian, LIU Rong-qiang, et al. Numerical Simulation and Analysis on Flattening Process of Composite TRAC Boom[J]. Journal of Astronautics, 2019, 40(05): 570-576.
[16] Yang H, Lu F, Guo H, et al. Design of a New N-Shape Composite Ultra-Thin Deployable Boom in the Post-Buckling Range Using Response Surface Method and Optimization[J]. Ieee Access, 2019, 7: 129659-129665.
[17] Yang H, Guo H, Wang Y, et al. Analytical solution of the peak bending moment of an M boom for membrane deployable structures[J]. International Journal of Solids and Structures, 2020, 206: 236-246.
[18] Fernandez J M, Viquerat A, Lappas V J, et al. Bistable Over the Whole Length (BOWL) CFRP Booms for Solar Sails[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.
[19] Fernandez J M, Visagie L, Schenk M, et al. Design and development of a gossamer sail system for deorbiting in low earth orbit[J]. Acta Astronautica, 2014, 103: 204-225.
[20] 陈  昊, 徐  超, 王海军等. “太原号”立方星气动增阻辅助离轨帆装置[J]. 空间电子技术, 2021, 18(05): 99-105.
CHEN Hao, XU Chao, WANG Hai-jun, et al. Drag sail device for assisting deorbit of “Taiyuan” cubesat[J]. Space Electronic Technology, 2021, 18(05): 99-105.
[21] Wilson L, Gdoutos E E, Pellegrino S. Tension-Stabilized Coiling of Isotropic Tape Springs[J]. International Journal of Solids and Structures, 2020, 188: 103-117.
[22] Hoskin A L. Blossoming of coiled deployable booms[C]// 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015.
[23] Guest S D, Pellegrino S. Analytical models for bistable cylindrical shells[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2006, 462(2067): 839-854.
[24] Yan Z, Wu M. Analysis and tests of non-uniform wrapping process of tape spring[J]. International Journal of Solids and Structures, 2023, 281: 112444.
[25] Kebadze E, Guest S D, Pellegrino S. Bistable prestressed shell structures[J]. International Journal of Solids and Structures, 2004, 41(11-12): 2801-2820.
[26] Hoskin A, Viquerat A, Aglietti G S. Tip force during blossoming of coiled deployable booms[J]. International Journal of Solids and Structures, 2017, 118: 58-69.
[27] 王思聪. 面向可展开平面薄膜结构的薄壁弹性伸杆研究[D]. 哈尔滨:哈尔滨工业大学, 2021.
WANG Si-cong. Research on Thin-Walled Elastic Deployable Booms Facing Deployable Planar Membrane Structures[D]. Harbin: Harbin Institute of Technology, 2021.
[28] 王思聪, 商红军, 郭宏伟等. 薄壁圆管开口式伸展臂卷绕过程力学特性分析[J]. 载人航天, 2020, 26(02): 159-165.
WANG Si-cong, SHANG Hong-jun, GUO Hong-wei, et al. Mechanical Feature Analysis of a Deployable Thin-Walled Open Cylindrical Boom[J]. Manned Spaceflight, 2020, 26(02): 159-165.
[29] Wang S, Schenk M, Guo H, et al. Tip force and pressure distribution analysis of a deployable boom during blossoming[J]. International Journal of Solids and Structures, 2020, 193: 141-151.
[30] Wang S, Schenk M, Jiang S, et al. Blossoming analysis of composite deployable booms[J]. Thin-Walled Structures, 2020, 157: 107098.
[31] Calladine C R, Seffen K A. Folding the Carpenter's Tape: Boundary Layer Effects[J]. Journal of Applied Mechanics-Transactions of the Asme, 2020, 87(1): 011009.

PDF(2015 KB)

Accesses

Citation

Detail

段落导航
相关文章

/