基于混合监测理论的桥梁全局响应重构方法

孙海彬1, 李轶贤2, 孙利民1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 107-114.

PDF(3121 KB)
PDF(3121 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 107-114.
振动理论与交叉研究

基于混合监测理论的桥梁全局响应重构方法

  • 孙海彬1,李轶贤*2,孙利民1
作者信息 +

Bridge full-field response reconstruction method based on hybrid monitoring theory

  • SUN Haibin1, LI Yixian*2, SUN Limin1
Author information +
文章历史 +

摘要

卡尔曼滤波(Kalman filter, KF)和最大化后验概率法(Maximum a Posteriori, MAP)是结构荷载识别中常见的两类广义贝叶斯滤波算法,KF法计算效率高但数值稳定性较差,MAP法适用性强却需要复杂的矩阵求逆运算,加之这两类方法对荷载形式和测点布置的苛刻要求,目前仅适用于简单荷载的识别。为此,本研究提出了针对任意分布式荷载的贝叶斯全局响应重构方法,从在线和离线两个角度改进了现有方法。针对在线KF方法,本研究从结构动力特性中导出等效荷载向量来降低未知荷载的维度,得到满足可控性条件的等效系统模型,并采用输入状态联合估计方法同时识别等效荷载和全局响应。针对离线MAP方法,引入考虑了空间相关性的荷载先验分布,采用MAP策略同时对等效荷载和观测噪声进行迭代估计,随后根据识别得到的等效荷载重构全局响应。改进后的在线和离线方法均不需要提前获取荷载位置或分布形式。最后,通过青州大桥在风荷载和交通荷载下采集的响应数据对所提方法的精度和适用性进行了验证。

Abstract

The Kalman filter (KF) and Maximum a Posteriori (MAP) methods are two types of generalized Bayesian filters in structural load identification. KF is computationally efficient with poor numerical stability, and in contrast, MAP is highly applicable requiring complex matrix inversion operations. Additionally, both methods have limitations on the load distribution and sensor arrangement, applying to simple types of loads. To address these challenges, a Bayesian full-field response reconstruction approach is proposed for arbitrary distributed loads, enhancing both online and offline methods. In online KF methods, a set of equivalent force vectors derived from the structural dynamic property is used to reduce the dimension of unknown loads, and a reduced system model is obtained with sufficient controllability on the origin system model. The joint input-state estimation filter is utilized to simultaneously identify equivalent loads and full-field responses. In the offline MAP method, a load prior distribution considering spatial correlation is introduced. The most probable load parameters and hyperparameters are iteratively estimated by MAP strategy. Consequently, the identified distributed loads are adopted to reconstruct the full-field structural responses. The improved online and offline methods both do not require prior information of load positions or distribution. Finally, the proposed methods are validated using the structural response data of Qingzhou Bridge to wind and traffic loads. 

关键词

卡尔曼滤波 / 最大化后验概率 / 混合监测 / 全局响应重构

Key words

Kalman filter / maximum a posteriori / hybrid monitoring / full-field response reconstruction

引用本文

导出引用
孙海彬1, 李轶贤2, 孙利民1. 基于混合监测理论的桥梁全局响应重构方法[J]. 振动与冲击, 2025, 44(3): 107-114
SUN Haibin1, LI Yixian2, SUN Limin1. Bridge full-field response reconstruction method based on hybrid monitoring theory[J]. Journal of Vibration and Shock, 2025, 44(3): 107-114

参考文献

[1]  G. Kerschen, K. Worden, A.F. Vakakis, J.-C. Golinval, Past, present and future of nonlinear system identification in structural dynamics, Mechanical systems and signal processing, 20 (2006) 505-592.
[2]  S. Law, J. Li, Y. Ding, Structural response reconstruction with transmissibility concept in frequency domain, Mechanical Systems and Signal Processing, 25 (2011) 952-968.
[3]  J. He, X. Guan, Y. Liu, Structural response reconstruction based on empirical mode decomposition in time domain, Mechanical Systems and Signal Processing, 28 (2012) 348-366.
[4]  Sun L, Sun H, Zhang W, et al. Hybrid monitoring methodology: A model-data integrated digital twin framework for structural health monitoring and full-field virtual sensing[J]. Advanced Engineering Informatics, 2024, 60: 102386.
[5]  Ø. Petersen, O. Øiseth, E. Lourens, Wind load estimation and virtual sensing in long-span suspension bridges using physics-informed Gaussian process latent force models, Mechanical Systems and Signal Processing, 170 (2022) 108742.
[6]  S.E. Azam, E. Chatzi, C. Papadimitriou, A dual Kalman filter approach for state estimation via output-only acceleration measurements, Mechanical systems and signal processing, 60 (2015) 866-886.
[7] 祁义博,彭珍瑞. 非高斯测量噪声下的结构响应重构[J]. 振动与冲击, 2024, 43(11): 206-216.
QI Yibo, Peng Zhenrui. Structural response reconstruction under non-Gaussian measurement noise [J]. Journal of vibration and shock, 2024, 43(11): 206-216.
[8] 张肖雄,贺佳.基于扩展卡尔曼滤波的结构参数和荷载识别研究[J].工程力学,2019,36(04):221-230.
     Zhang Xiaoxiong, He Jia. Identification of structural parameters and unknown excitations based on the extended Kalman filter[J].Engineering Mechanics,2019,36(4):221-230.
[9]  Ø.W. Petersen, O. Øiseth, E. Lourens, Investigation of dynamic wind loads on a long-span suspension bridge identified from measured acceleration data, Journal of Wind Engineering and Industrial Aerodynamics, 196 (2020) 104045.
[10]  E. Zhang, J. Antoni, P. Feissel, Bayesian force reconstruction with an uncertain model, Journal of Sound and Vibration, 331 (2012) 798-814.
[11] G. Yan, H. Sun, A non-negative Bayesian learning method for impact force reconstruction, Journal of Sound and Vibration, 457 (2019) 354-367.
[12] Y. Li, X. Wang, Y. Xia, L. Sun, Sparse Bayesian technique for load identification and full response reconstruction, Journal of Sound and Vibration, 553 (2023) 117669.
[13] J. MasseyY, M.K. Sain, Inverses of linear sequential circuits, IEEE Transactions on computers, 100 (1968) 330-337.
[14] P. Moylan, Stable inversion of linear systems, IEEE Transactions on Automatic Control, 22 (1977) 74-78.
[15] T. Glad, L. Ljung, Control Theory: Multivariable and Nonlinear Methods, 1st ed ed., Taylor & Francis, New York, USA, 2000.
[16] Gillijns S, De Moor B. Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough[J]. Automatica, 2007, 43(5): 934-937.
[17] Yuen K V, Kuok S C. Online updating and uncertainty quantification using nonstationary output-only measurement[J]. Mechanical Systems and Signal Processing, 2016, 66: 62-77.
[18] 张笑华,吴志彪,吴圣斌,黄梅萍. 基于移动窗卡尔曼滤波算法的结构响应重构[J]. 振动与冲击, 2021, 40(21): 90-96.
      Zhang Xiaohua, Wu Zhibiao, Wu Shengbin, Huang Meiping. Structural response reconstruction based on moving window Kalman filtering algorithm [J]. Journal of vibration and shock, 2021, 40(21): 90-96.
[19] Li Y, Huang H, Zhang W, et al. Structural full-field responses reconstruction by the SVD and pseudo-inverse operator-estimated force with two-degree multi-scale models[J]. Engineering Structures, 2021, 249: 112986.
[20] Sun L, Li Y, Zhu W, et al. Structural response reconstruction in physical coordinate from deficient measurements[J]. Engineering Structures, 2020, 212: 110484.
[21] Sun L, Li Y, Zhang W. Experimental study on continuous bridge-deflection estimation through inclination and strain[J]. Journal of Bridge Engineering, 2020, 25(5): 04020020.
[22] P.M. Lee, Bayesian statistics, Oxford University Press London:, 1989.
[23] Y. Shan, L. Li, Q. Xia, W. Gao, Q. Jing, Y. Xia, Temperature behavior of cable-stayed bridges. Part I—Global 3D temperature distribution by integrating heat-transfer analysis and field monitoring data, Advances in Structural Engineering, 26 (2023) 1579-1599
[24] Y. Shan, Q. Jing, L. Li, W. Gao, Z. Xia, Y. Xia, Temperature behavior of cable-stayed bridges. Part II—temperature actions by using unified analysis, Advances in Structural Engineering, 26 (2023) 1600-1620.
[25] Weng S, Tian W, Zhu H, et al. Dynamic condensation approach to calculation of structural responses and response sensitivities[J]. Mechanical Systems and Signal Processing, 2017, 88: 302-317.

PDF(3121 KB)

176

Accesses

0

Citation

Detail

段落导航
相关文章

/