基于混沌多项式的超轻型火炮发射过程区间不确定性分析

刘加鑫1, 杨国来1, 王丽群1, 薛立国2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 132-139.

PDF(3640 KB)
PDF(3640 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 132-139.
冲击与爆炸

基于混沌多项式的超轻型火炮发射过程区间不确定性分析

  • 刘加鑫1,杨国来1,王丽群*1,薛立国2
作者信息 +

Interval uncertainty analysis of ultra-light artillery firing process based on polynomial chaos expansion

  • LIU Jiaxin1, YANG Guolai1, WANG Liqun*1, XUE Liguo2
Author information +
文章历史 +

摘要

火炮发射过程中,存在由弹、炮、药、环境等各种因素引起的不确定性,这些不确定性将不可避免地影响火炮发射的综合性能,只考虑超轻型火炮发射过程中的确定性问题,无法获得其准确的变化规律。因此本文基于非侵入式的混沌多项式展开(polynomial chaos expansions,PCE),提出一种计算超轻型火炮弹丸起始扰动范围的区间不确定性分析方法。首先建立了含有区间不确定性参数的超轻型火炮多体动力学模型,基于截断的PCE,通过在不确定性空间内的采样理论,将含区间不确定性参数的动力学系统转变为仅含确定性参数的动力学系统。进一步利用混沌多项式区间扩张函数估算弹丸起始扰动和其他动力学响应的动态区间边界,该研究可为超轻型火炮弹丸起始扰动散布计算提供参考。

Abstract

In the process of artillery firing, uncertainties arising from various factors, such as projectile, gun, propellant and environment, significantly impact the overall performance of the artillery. Addressing only the deterministic aspects of ultra-light artillery firing is insufficient for accurately determining its rules of change. Consequently, this paper proposes an interval uncertainty analysis method based on non-invasive chaotic polynomial expansion (PCE) to calculate the range of the initial disturbance of ultra-light artillery projectiles. Initially, a multi-body dynamics model of ultra-light artillery, encompassing interval uncertainty parameters, is established. Subsequently, using the truncated PCE, the dynamic system containing interval uncertainty parameters is transformed into a dynamic system containing only deterministic parameters through sampling theory in the uncertainty space. The dynamic interval boundaries of the projectile's onset perturbation and other dynamical responses are further estimated using chaotic polynomial interval expansion functions. This study offers valuable insights for calculating the scattering of projectile onset perturbations in ultra-light artillery.

关键词

超轻型火炮 / 混沌多项式展开 / 火炮发射动力学 / 不确定性分析

Key words

Ultra-light artillery / Polynomial Chaos Expansion / Cannon Launch Dynamics / Uncertainty Analysis

引用本文

导出引用
刘加鑫1, 杨国来1, 王丽群1, 薛立国2. 基于混沌多项式的超轻型火炮发射过程区间不确定性分析[J]. 振动与冲击, 2025, 44(3): 132-139
LIU Jiaxin1, YANG Guolai1, WANG Liqun1, XUE Liguo2. Interval uncertainty analysis of ultra-light artillery firing process based on polynomial chaos expansion[J]. Journal of Vibration and Shock, 2025, 44(3): 132-139

参考文献

[1] 丁树奎,王良明,杨志伟,等. 远程火炮弹丸起始扰动的动力学特性[J]. 兵工学报, 2021,42(04) : 673-683.
DING Shukui, WANG Liangming, YANG Zhiwei, et al. Dynamic Property of the Initial Disturbance of Projectile for the Long-range Artillery Howitzer[J]. Acta Armamentarii, 2021, 42(04): 673-683.
[2] Tong N, Liu Q, Han X, et al. Uncertainty Analysis and Sensitivity Estimation on an Artillery External Ballistic System[J]. Journal of Mechanical Design, 2022, 144(10): 101702.
[3] 梁恩佐,顾克秋. 上架结构参数与弹丸起始扰动映射关系的研究[J]. 兵器装备工程学报, 2023,44(10): 217-223.
LIANG Enzuo, GU Keqiu. Influence of top carriage parameters and initial disturbance of projectile[J]. Journal of Ordnance Equipment Engineering, 2023,44(10): 217-223.
[4] 胡坚江,顾克秋. 高平机特性对弹丸起始扰动的影响分析[J]. 火炮发射与控制学报, 2021,42(03): 1-7.
HU Jianjiang, GU Keqiu. Analysis of the Impact of Elevating Equilibrator Features for Initial Projectile Disturbance[J]. Journal of Gun Launch & Control, 2021,42(03): 1-7.
[5] 李建中,胡敬坤,李育兵,等. 某型火炮弹丸质量偏心对弹丸起始扰动的影响分析[J]. 兵工自动化, 2017,36(11): 8-11.
LI Jianzhong, HU Jingkun, LI Yubing, et al. Influence Analysis of Certain Type Howitzer Projectile Eccentric Mass on Projectile Initial Disturbance[J]. Ordnance Industry Automation, 2017,36(11): 8-11.
[6] 王丽群,杨国来,葛建立. 面向射击密集度的随机因素影响分析[J]. 火炮发射与控制学报,2016,37(04): 54-57.
WANG Liqun, YANG Guolai, GE Jianli. Influence of the Random Factors on Firing Dispersion[J]. Journal of Gun Launch & Control, 2016,37(04): 54-57.
[7] 王明明,钱林方,陈光宋,等. 基于概率密度演化方法的火炮输弹过程不确定性分析[J]. 兵工学报, 2022,43(06): 1215-1224.
WANG Mingming, QIAN Linfang, CHEN Guangsong, et al. Uncertainty Analysis of Ammunition Ramming Process Based on Probability Density Evolution Method[J]. Acta Armamentarii, 2022,43(06): 1215-1224.
[8] Suffian M S Z M, Kamil S, Ariffin A K. Uncertainty analysis of varied meshes of a finite element model using Monte Carlo simulation[J]. International Journal of Structural Integrity, 2022, 13(6): 907-921.
[9] Li J M, Yan W M, Lu D B, et al. Sensitivity analysis of factors affecting for the engraving of rifle projectile[J]. Journal of Physics: Conference Series, 2021, 1721(1): 012050.
[10] Xin Z, Chao G, Fangfang J, et al. Monte Carlo Method and Quantile Regression for Uncertainty Analysis of Wind Power Forecasting Based on Chaos-LS-SVM[J]. International Journal of Control, Automation and Systems, 2021, 19(11): 3731-3740.
[11] 魏彤辉. 基于函数分解法的结构区间分析及优化设计[D].吉林大学, 2022.
[12] Qian L, Chen G. The uncertainty propagation analysis of the projectile-barrel coupling problem[J]. Defence Technology, 2017, 13(04): 229-233.
[13] Achyut P, Subham G, Mishal T, et al. Higher-order Taylor series expansion for uncertainty quantification with efficient local sensitivity[J]. Aerospace Science and Technology, 2022, 126: 107574.
[14] 陈光宋,钱林方,王明明,等. 基于统计信息的多体系统区间不确定性分析[J]. 振动与冲击, 2019,38(08): 117-125.
CHEN Guangsong, QIAN Linfang, WANG Mingming, et al. An interval analysis method based on statistical information for a multibody system with uncertainty[J]. Journal of Vibration and Shock, 2019, 38(08): 117-125.
[15] 刘安民,高峰,张青斌,等. 基于多项式混沌展开方法的翼伞飞行不确定性[J]. 兵工学报, 2021,42(07): 1392-1399.
LIU Anmin, GAO Feng, ZHANG Qingbin, et al. Application of PCE Method in Parafoil-flight Uncertainty Analysis[J]. Acta Armamentarii, 2021, 42(07):1392-1399.
[16] Zhang X, Pandey D M, Luo H. Structural uncertainty analysis with the multiplicative dimensional reduction–based polynomial chaos expansion approach[J]. Structural and Multidisciplinary Optimization, 2021, 64(4): 1-19.
[17] 陈梅玲. 基于多项式混沌展开的不确定性分析和降维方法研究[D]. 厦门大学, 2020.
[18] 刘达. 轻量化牵引火炮全炮动态应力分析[D]. 南京理工大学, 2008.
[19] Wiener N. The Homogeneous Chaos. American Journal of Mathematics, 1938, 60(4): 897-936.
[20] Adnan K, Matt A, R. C S, et al. Optimal sampling using Conditioned Latin Hypercube for digital soil mapping: An approach using Bhattacharyya distance[J]. Geoderma,2023, 439(1): 116660.

PDF(3640 KB)

195

Accesses

0

Citation

Detail

段落导航
相关文章

/