双锥药型罩聚能射流侵彻钢靶板试验与高精度仿真

赵富裕 1, 王成 1, 王泽宇 1, 徐文龙 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 150-162.

PDF(4960 KB)
PDF(4960 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 150-162.
冲击与爆炸

双锥药型罩聚能射流侵彻钢靶板试验与高精度仿真

  • 赵富裕 1,王成*1,王泽宇 1,徐文龙 2
作者信息 +

Tests and high-precision simulation of biconical shaped charge jet penetrating steel target plate

  • ZHAO Fuyu1, WANG Cheng*1, WANG Zeyu1, XU Wenlong2
Author information +
文章历史 +

摘要

双锥聚能装药对装甲目标具有较强的毁伤效应,试验及高精度仿真对双锥聚能装药毁伤性能的改进具有重要意义。为研究不同结构及材料双锥形药型罩聚能装药对钢靶板侵彻性能的影响,设计了5种不同结构的双锥形药型罩,同时考虑不同药型罩材料(紫铜、高熵合金)及壳体对双锥药型罩聚能射流侵彻性能的影响,开展了双锥药型罩射流侵彻钢靶板的静破甲试验。基于流体弹塑性控制方程组,构造了适用于聚能射流形成及侵彻仿真的高精度欧拉算法,集成算法为计算程序并对试验工况进行模拟。数值模拟与试验结果相互对比,验证了自主构造的高精度数值方法的准确性。研究结果表明:对于不同结构的紫铜双锥形药型罩,其射流头部速度伴随着药型罩内锥角的增大而减小,射流长度逐渐变小,有效侵彻质量及侵彻深度逐渐增大。对于相同结构的紫铜与高熵合金药型罩,其聚能射流侵彻口径及穿深差异不大。高熵合金射流头部速度更大,侵彻口径从上到下较为一致。

Abstract

The double cone shaped charge has a strong destructive effect on armored targets. Tests and high precision simulations are of great significance for improving the destructive performance of shaped charge. To study the effect of different structures and materials of conical shaped charges on the penetration property of steel target plates, five kinds of biconical shaped charge liners with different structures are designed, and the influence of different materials (copper and high entropy alloy) and shell on the penetration properties of biconical shaped charge jet are considered. The static armor-piercing test of the shaped charge jet penetrating the steel target plate is carried out. Based on the fluid elastoplastic governing equations, a high-precision Euler algorithm for the formation and penetration simulation of shaped charge jet is constructed, and the numerical simulation of the experimental conditions is carried out with the constructed program. The reliability of the self-constructed high-precision numerical method is verified by comparison of numerical simulation and experiment. The results show that the head velocity and length of the jet decreases with the increase of the inner cone angle, while the effective penetration mass and penetration depth increase gradually. For the copper and high-entropy alloy shaped charge liners with the same structure, the difference in penetration diameter and depth is not significant. The head velocity of the high-entropy alloy jet is larger, and the penetration diameter of the high-entropy alloy is more consistent from top to bottom.

关键词

双锥药型罩 / 聚能射流 / 射流形成及侵彻 / 钢靶板 / 高精度仿真

Key words

biconical liner / shaped charge jet / jet formation and penetration / steel target / high precision simulation

引用本文

导出引用
赵富裕 1, 王成 1, 王泽宇 1, 徐文龙 2. 双锥药型罩聚能射流侵彻钢靶板试验与高精度仿真[J]. 振动与冲击, 2025, 44(3): 150-162
ZHAO Fuyu1, WANG Cheng1, WANG Zeyu1, XU Wenlong2. Tests and high-precision simulation of biconical shaped charge jet penetrating steel target plate[J]. Journal of Vibration and Shock, 2025, 44(3): 150-162

参考文献

[1] 黄正祥. 聚能装药理论与实践[M]. 北京: 北京理工大学出版社, 2014.
HUANG Zhengxiang. Theory and practice of shaped charge[M]. Beijing: Beijing institute of technology press, 2014.
[2] 王艺臻, 尹建平, 张雪朋, 等. 超聚能战斗部结构优化数值模拟[J]. 兵器装备工程学报, 2023, 44(05): 100-106.
WANG Yizhen, YIN Jianping, ZHANG Xuepeng, et al. Numerical simulation of the optimal design of the hypercumulation warhead structure[J]. Journal of Ordnance Equipment Engineering, 2023, 44(05): 100-106.
[3] 徐文龙, 王成, 徐斌. 超聚能射流形成过程机理研究[J]. 兵工学报, 2018, 39(02): 261-268.
XU Wenlong, WANG Cheng, XU Bin. Investigation of Hyper Shaped Charge Jet Formation Theory[J]. Acta Armamentarii, 2018, 39(02): 261-268.
[4] 张朝平, 张先锋, 谈梦婷, 等. 聚能杆式射流侵彻混凝土和岩石靶体试验与数值模拟[J]. 含能材料, 2023, 31(08): 773-785.
ZHANG Chaoping, ZHANG Xianfeng, TAN Mengting, et al. Experimental and numerical simulation of shaped charge jet penetrating concrete and rock targets[J]. Chinese Journal of Energetic Materials, 2023, 31(08): 773-785.
[5] 王子明, 闫建文, 王羽翼, 等. 双锥药型罩结构参数对聚能射流的影响[J]. 工程爆破, 2020, 26(03): 23-29.
WANG Ziming, YAN Jianwen, WANG Yuyi, et al. Influnce of structural parameters of the double cone shaped charge liner on shaped charge jet[J]. Engineering Blasting, 2020, 26(03): 23-29.
[6] 郝钢, 李艳飞, 刘裕涛. 锥角比对双锥药型罩射流成型影响的数值模拟[J]. 机械工程与自动化, 2023, (06): 84-85.
HAO Gang, LI Yanfei, LIU Yutao. Numerical simulation of influence of cone angle ratio on jet forming of double-cone shaped charge[J]. Mehanical Engineering & Automation, 2023, (06): 84-85.
[7] 李磊, 马宏昊, 沈兆武. 基于正交设计方法的双锥罩结构优化设计[J]. 爆炸与冲击, 2013, 33(06): 567-573.
LI Lei, MA Honghao, SHEN Zhaowu. Optimal design of biconical liner structure based on orthogonal design method[J]. Explosion and Shock Waves, 2013, 33(06): 567-573.
[8] 陈闯, 唐恩凌. 双锥药型罩射流成型的理论建模与分析[J]. 火炸药学报, 2019, 42(06): 637-643.
CHEN Chuang, TANG Enling. Theoretical modeling and analysis on jet formation of biconical liner[J]. Chinese Journal of Explosives & Propellants, 2019, 42(06): 637-643.
[9] 王珞冰, 焦志刚, 初善勇. 基于正交设计试验的双锥药型罩结构优化[J]. 科学技术与工程, 2020, 20(17): 6737-6741.
WANG Luobing, JIAO Zhigang, CHU Shanyong. Structural optimization of double-cone shaped charge based on orthogonal design test[J]. Science Technology and Engineering, 2020, 20(17): 6737-6741.
[10] 王子明, 闫建文, 雷方超, 等. 辅助型双锥药型罩结构的数值仿真优化[J]. 爆破, 2019, 36(02): 33-39.
WANG Ziming, YAN Jianwen, LEI Fangchao, et al. Design of numerical simulation optimization of auxiliary double-cone shaped cover structure[J]. Blasting, 2019, 36(02): 33-39.
[11] 赵海平, 刘天生, 石军磊, 等. 双锥结合罩射流特性影响因素的模拟研究[J]. 火工品, 2018, (02): 35-39.
ZHAO Haiping, LIU Tiansheng, SHI Junlei, et al. Numerical simulation of impacts on jet formation properties of dual-cone shaped charge[J]. Initiators & Pyrotechnics, 2018, (02): 35-39.
[12] 孔繁家, 周春桂, 王志军, 等. 罩顶材料对双锥药型罩成型及侵彻性能的影响[J]. 兵器材料科学与工程, 2021, 44(06): 30-35.
KONG Fanjia, ZHOU Chungui, WANG Zhijun, et al. Influence of top material on forming and penetration performance of double cone type charge[J]. Ordnance Material Science and Engineering, 2021, 44(06): 30-35.
[13] 印立魁, 王维占, 程瑶, 等. 局部复合药型罩威力性能数值模拟研究[J]. 振动与冲击, 2022, 41(18): 197-204.
YIN Likui, WANG Weizhan, CHENG Yao, et al. Numerical simulation on the power performance of a local composite charge cover[J]. Journal of Vibration and Shock, 2022, 41(18): 197-204.
[14] Osher S, Sethian A J. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
[15] Fedkiw R P, Aslam T, Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[J]. Journal of Computational Physics, 1999, 152(2): 457-492.
[16] Chen Q, Liu K. A high-resolution Eulerian method for numerical simulation of shaped charge jet including solid–fluid coexistence and interaction[J]. Computers & Fluids, 2012, 56: 92-101.
[17] Yeom G. Numerical simulation of conical and linear-shaped charges using an Eulerian elasto-plastic multi-material multi-phase flow model with detonation[J]. Materials, 2022, 15(5): 1700.
[18] Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190(2): 651-681.
[19] 王成, 钱琛庚, 张文耀, 等. 危化品爆炸大规模高精度仿真软件研发与应用[J]. 中国安全科学学报, 2022, 32(09): 20-28.
WANG Cheng, QIAN Chengeng, ZHANG Wenyao, et al. Development and applications of large-scale and high order accurate simulation software for hazardous chemical explosion[J]. China Safety Science Journal, 2022, 32(09): 20-28.
[20] Ponthot J P. Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[J]. International Journal of Plasticity, 2002, 18(1): 91-126.
[21] Hartenf A, Lax P D, Van Lee B. On upstream differencing and godunov-type schemes for hyperbolic conservation laws[J]. Siam Review, 1983, 25(1): 35-61.
[22] Toro E F, Spruce M, Speares W. Restoration of the contact surface in the hll-riemann solver[J]. Shock Waves, 1994, 4(1): 25-34.
[23] Zhao F Y, Wang C, Jia X Y, et al. Harten-lax-van leer-discontinuities with elastic waves (HLLD-e) approximate riemann solver for two-dimensional elastic-plastic flows with slip/no-slip interface boundary conditions[J]. Computers & Fluids, 2023, 265: 106015.
[24] Jiang G, Shu C. Efficient implementation of weighted eno schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
[25] Bdzil J B, Stewart D S, Jackson T L. Program burn algorithms based on detonation shock dynamics: discrete approximations of detonation flows with discontinuous front models[J]. Journal of Computational Physics, 2001, 174(2): 870-902.
[26] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2020.
XIN Chunliang, XUE Zaiqing, TU Jian, et al. Handbook of Common Material Parameters for Finite Element Analysis[M]. Beijing: China Machine Press, 2020.
[27] 鄢阿敏, 乔禹, 戴兰宏. 高熵合金药型罩射流成型与稳定性[J]. 力学学报, 2022, 54(08): 2119-2130.
YAN Amin, QIAO Yu, DAI Lanhong. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy[J]. Chinese Joumal of Theoretical and Applied Mechanics, 2022, 54(08): 2119-2130.

PDF(4960 KB)

257

Accesses

0

Citation

Detail

段落导航
相关文章

/