舰船设备关键零件的冲击损伤累积及寿命预测方法

陈卓, 闫明, 金映丽

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 163-170.

PDF(1307 KB)
PDF(1307 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 163-170.
冲击与爆炸

舰船设备关键零件的冲击损伤累积及寿命预测方法

  • 陈卓,闫明*,金映丽
作者信息 +

Impact damage accumulation and life prediction method for key components of ship equipment

  • CHEN Zhuo, YAN Ming*, JIN Yingli
Author information +
文章历史 +

摘要

针对舰船设备在海战时遭受敌方武器及自身火炮后坐力冲击造成的损伤累积问题,提出了隶属函数和Miner损伤累积理论相结合的冲击疲劳寿命预测方法。从外界冲击中提取冲击幅值和均值,根据GM(1, 1)模型预测冲击幅值的参数,并利用BP(back propagation)神经网络修正残差提高预测精度。利用疲劳模数与寿命的联系提出一种新的应力-寿命模型,并基于多项式变异理论确定模型中的参数。将舰船设备上的关键零件6061铝合金轴作为试验对象,并结合几种隶属函数预测试件的冲击疲劳寿命。结果表明:采用Γ分布隶属函数求得的冲击疲劳寿命预测值与试验值相比误差最小,且当Γ分布中的k值一定时,参数a1 的变化在初始阶段对预测值基本不产生影响,只有当a1 逐渐接近S0 时才会有微小的影响。说明提出的疲劳寿命预测方法是可靠的,为舰船设备关键零件的冲击损伤累积研究及寿命预测提供理论参考和数据基础。

Abstract

Aiming at the problem of damage accumulation caused by the impact of enemy weapons and their own artillery recoil during naval battles, a method of impact fatigue life prediction combining membership functions and Miner damage accumulation theory is proposed. The impact amplitudes and means are extracted from external shocks, and the parameters of shock amplitudes are predicted according to GM(1, 1) model, and the residual errors are corrected by BP neural network to improve the prediction accuracy. A new stress-life model is proposed based on the relationship between fatigue modulus and life, and the parameters in the model are determined based on polynomial variation theory. Taking 6061 aluminum alloy shafts, the key parts of warship equipment, as the test object, and combining with several membership functions, the impact fatigue lives of the specimens are predicted. The results show that the errors of the predicted values of impact fatigue lives obtained by the membership function of Γ distribution are the smallest compared with the experimental values, and when the value of k in Γ distribution is constant, the change of parameter a1 almost has no influence on the predicted value in the initial stage, and only has a slight influence when a1 approaches S0 gradually. It shows that the proposed fatigue life prediction method is reliable, and provides theoretical reference and data basis for the impact damage accumulation research and life prediction of key parts of warship equipment.

关键词

灰色估计 / 多项式变异 / 冲击损伤累积 / 隶属函数 / 寿命预测

Key words

grey estimation / polynomial mutation / impact damage accumulation / membership function / life prediction

引用本文

导出引用
陈卓, 闫明, 金映丽. 舰船设备关键零件的冲击损伤累积及寿命预测方法[J]. 振动与冲击, 2025, 44(3): 163-170
CHEN Zhuo, YAN Ming, JIN Yingli. Impact damage accumulation and life prediction method for key components of ship equipment[J]. Journal of Vibration and Shock, 2025, 44(3): 163-170

参考文献

[1]  Jan. P, Matúš. M, Vladimír. C. Various Parameters of the Multiaxial Variable Amplitude Loading and Their Effect on Fatigue Life and Fatigue Life Computation[J].Fatigue Fracture of Engineering Materials Structures, 2021, 44(10): 355-366.
[2] Kazem. R.K, Kambiz. S, Abdolhossein. G.B, Reza. S.J, Mahmood. A. Fatigue Life Analysis of Automotive Cast Iron Knuckle under Constant and Variable Amplitude Loading Conditions[J].Applied Mechanics, 2022, 3(2): 213-219.
[3]  S. M. Marco, W. L. Starkey. A concept of fatigue damage [J]. Transaction of the ASME, 2014,76(4): 627- 632.
[4]  Benkabouche. S, Guechichi. H, Amrouche. A. A Modified Nonlinear Fatigue Damage Accumulation Model Under Multiaxial Variable Amplitude Loading [J]. International Journal of Mechanical Sciences , 2015, 100(3): 180-194.
[5]  Khonsari. M.M, Amiri. M. On the Role of Entropy Generation in Processes Involving Fatigue[J].Entropy, 2011, 14(1): 24-31.
[6]  Amiri. M. An Experimental Approach to Evaluate the Critical Damage[J]. International Journal of Damage Mechanics, 2011, 20(1): 89-112.
[7]  Naderi. M, Khonsari. M.M. A Thermodynamic Approach to Fatigue Damage Accumulation Under Variable Loading[J]. Materials Science Engineering A, 2010, 527(23): 289-297.
[8]  Kohler. M, Jenne. S, Pötter. K, et al. Load Assumption for Fatigue Design of Structures and Components: Counting Methods, Safety Aspects, Practical Application[M]. Springer, 2017, 28(4): 582-596.
[9]  M. Naderi, M. Amiri, M. M. Khonsari. On the thermodynamic entropy of fatigue fracture[J].Proceedings of the Royal Society A : Mathematical , Physical and Engineering Sciences , 2010 ,
466(2114): 423-438.
[10] 黄洪钟,朱顺鹏,汪忠来,等.基于剩余强度衰减退化的非线性累积损伤准则及其可靠性定寿[J].应用基础与工程科学学报,2011,19(2) : 323-334.
HUANG Hongzhong,ZHU Shunpeng,WANG Zhonglai,et al.Nonlinear Fatigue Damage Cumulative Rule Based on Strength Degradation and Its Application to Fatigue Life Reliability Analysis [J].Journal of Basic Science and Engineering,2011,19(2) : 323-334.
[11] 朱顺鹏,黄洪钟,何俐萍,等. 高温低周疲劳-蠕变的改进型广义应变能损伤函数方法 [J]. 航空学报, 2011, 32 (08): 1445 -1452.
ZHU Shunpeng, HUANG Hongzhong, HE Liping, etc. An improved generalized strain energy damage function method for high-temperature low cycle fatigue creep [J]. Journal of Aeronautics, 2011, 32 (08): 1445-1452.
[12] 武滢, 谢里阳. 基于二维载荷谱的疲劳寿命估算 [J]. 机械制造, 2011, 49(02):26-29.
WU Ying , XIE Liyang. Fatigue Life Estimation Based on Two-dimensional Load Spectrum[J].Machinery Manufacturing, 2011, 49 (02): 26-29.
[13] 薛齐文,杜秀云,王生武.基于载荷加载次序的疲劳寿命预测改进模型[J].中国铁道科学,2019,40(1) : 88-93.
XUE Qiwen,DU Xiuyun,WANG Shengwu.An Improved Fatigue Life Prediction Model Based on Loading Sequence [J].China Railway Science,2019, 40(1) : 88-93.
[14] 王海巧,孙青云,陈敏等. 基于非线性累积损伤理论与冲击模型的疲劳寿命预测 [J]. 扬州大学学报(自然科学版), 2020, 23 (04): 27-30. 
WANG Haiqiao, SUN Qingyun, CHEN Min, etc. Fatigue life prediction based on nonlinear cumulative damage theory and impact model [J]. Journal of Yangzhou University(Natural Science Edition), 2020, 23 (04): 27-30.
[15] 董国疆, 杜飞, 王威, 郎玉玲. 考虑低载荷强化效应的汽车转向节疲劳分析 [J]. 汽车工程, 2020, 42(03): 406-415.
DONG Guojiang, DU Fei, WANG Wei,LANG Yuling. Fatigue analysis of automotive steering knuckles considering low load strengthening effects [J]. Automotive Engineering, 2020, 42 (03): 406-415.
[16] 杨凡,孔德仁,孔霖,等. 基于BP神经网络的冲击波压力传感器组件动态特性分段建模方法研究 [J]. 振动与冲击, 2017, 36 (16): 155-158. 
YANG Fan, KONG Deren, Kong Lin, etc. Research on segmented modeling method for dynamic characteristics of shock wave pressure sensor components based on BP neural network [J].Vibration and Shock, 2017, 36 (16): 155-158.
[17] 余滨杉,王社良,杨涛,等. 基于遗传算法优化的SMABP神经网络本构模型 [J]. 金属学报, 2017, 53 (02): 248-256.
YU Binshan, WANG Sheliang, YANG Tao, etc. A constitutive model of SMABP neural network based on genetic algorithm optimization [J]. Journal of Metals, 2017, 53 (02): 248-256.
[18] Dong. Y, Garbatov. Y, Soares. C.G. A Two-Phase Approach to Estimate Fatigue Crack Initiation and Propagation Lives of Notched Structural Components[J]. International Journal of Fatigue, 2018,116(3): 523-534.
[19] 王强, 张培林, 王怀光, 等. 基于多目标粒子群算法的稀疏分解参数优化 [J]. 振动与冲击, 2017, 36 (23): 45-50. 
WANG Qiang, ZHANG Peilin, WANG Huaiguang, etc.Sparse decomposition parameter optimization based on multi- objective particle swarm optimization algorithm [J]. Vibration and Shock, 2017, 36 (23): 45-50.
[20] 王慧, 井伟川, 赵国超, 等. 基于灰色系统模型GM(1,1)改进Miner准则的液压支架底座疲劳寿命预测 [J]. 上海交通大学学报, 2020, 54 (01): 106-110. 
WANG Hui, JING Weichuan, ZHAO Guochao, etc. Prediction of fatigue life of hydraulic support base based on grey system model GM (1,1) improved Miner criterion [J].Journal of Shanghai Jiao Tong University, 2020, 54 (01): 106-110.
[21] Zio E, Di Maio F. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system [J] . Reliability Engineering & System Safety ,
2010, 95(1):49-57.
[22] Khan R A, Ahmad S. Bi-linear fatigue and fracture approach for safety analysis of an offshore structure [J]. Journal of Offshore Mechanics & Arctic Engineering, 2014, 136 (2): 115 -122.

PDF(1307 KB)

157

Accesses

0

Citation

Detail

段落导航
相关文章

/