基于HJC模型的深部岩石爆破裂纹受不耦合系数影响的模拟研究

何家辉, 胡义锋

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 171-181.

PDF(2950 KB)
PDF(2950 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 171-181.
冲击与爆炸

基于HJC模型的深部岩石爆破裂纹受不耦合系数影响的模拟研究

  • 何家辉,胡义锋*
作者信息 +

Simulation of deep rock blasting cracks affected by decoupling coefficient based on HJC model

  • HE Jiahui, HU Yifeng*
Author information +
文章历史 +

摘要

在深部岩石爆破开挖中,装药不耦合系数对岩石的破裂程度和损伤范围具有显著影响。首先基于已有实验数据标定Holmquist-Johnson-Cook(HJC)模型参数,使用有限元软件LS-DYNA引入额外的失效准则以更准确地描述模型拉伸损伤情况,并通过模拟岩石单孔爆破实验和利用经验公式验证模型的合理性;其次,研究不耦合系数和围压与爆破裂隙区范围间的关系,分析不耦合系数变化对粉碎区和炮孔周围环向应力场动态演化过程的影响。研究结果表明:不耦合系数和围压共同决定裂纹的扩展行为,不耦合系数增加,导致环向拉应力减小,径向裂纹扩展效应减弱,而围压的提升限制了裂纹的扩展,改变了径向裂纹的扩展范围;双向等值围压下,裂隙区范围随着不耦合系数和围压的增大呈先陡后缓的缩减趋势,围压对控制裂纹范围占主导地位;构建描述不耦合系数和侧压力系数对裂隙区范围影响的关系式,认为裂纹扩展具有明显的方向性,并根据其中关系,以期能够为深部岩石爆破中实现爆破裂纹的精细化控制,优化岩石破碎效率提供参考。

Abstract

In deep rock blasting excavation, the charge decoupling coefficient has a significant effect on the degree of rock rupture and the extent of damage. The parameters of the Holmquist-Johnson-Cook (HJC) model are firstly calibrated based on the available experimental data, additional failure criteria are introduced using the finite element software LS-DYNA to describe the model tensile damage more accurately, and the reasonableness of the model is verified by simulating the single-hole blasting experiments of the rock and by using empirical equations; secondly, the relationship between the decoupling coefficient, confining pressure and the range of blasting fractured zone is studied, the influence of the change of decoupling coefficient on the dynamic evolution of the hoop stress field around the crushed zone and the blasthole is analyzed. The results show that the decoupling coefficient and the confining pressure jointly determine the crack propagation behavior. As the decoupling coefficient increases, the hoop tensile stress decreases, resulting in a weakened effect on radial crack propagation. In the meantime, the increase in the confining pressure will limit the crack propagation and change the propagation area of the radial cracks. Under biaxial equivalent confining pressure, the fracture area initially decreases rapidly and then slowly as the decoupling coefficient and confining pressure increase; The relationship describing the influence of the decoupling coefficient and the lateral pressure coefficient on the range of the fracture zone is established, in order to provide reference for fine control of blasting crack and optimization of rock crushing efficiency in deep rock blasting.

关键词

深部岩石爆破 / HJC模型 / 不耦合系数 / 爆破裂纹 / 数值分析

Key words

Deep rock blasting / HJC model / decoupling coefficient / blast cracking / numerical analysis

引用本文

导出引用
何家辉, 胡义锋. 基于HJC模型的深部岩石爆破裂纹受不耦合系数影响的模拟研究[J]. 振动与冲击, 2025, 44(3): 171-181
HE Jiahui, HU Yifeng. Simulation of deep rock blasting cracks affected by decoupling coefficient based on HJC model[J]. Journal of Vibration and Shock, 2025, 44(3): 171-181

参考文献

[1] LI X D, LIU K W, SHA Y Y, et al. Numerical investigation on rock fragmentation under decoupled charge blasting[J]. Computers and Geotechnics, 2023, 157:105312.
[2] Yilmaz O, Unlu T. Three dimensional numerical rock damage analysis under blasting load[J]. Tunnelling Underground Space Technology, 2013, (38): 266-278.
[3] 杨建华, 吴泽南, 姚池, 等. 地应力对岩石爆破开裂及爆炸地震波的影响研究[J]. 振动与冲击, 2020, 39(13): 64-70+90. 
YANG Jianhua, WU Zenan, YAO Chi, et al. Influences of in-situ stress on blast-induced rock fracture and seismic waves[J]. Journal of Vibration and Shock, 2020, 39(13): 64-70+90.
[4] YANG L Y, DING C X. Fracture mechanism due to blast-imposed loading under high static stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 107:150-158.
[5] 徐颖, 顾柯柯, 葛进进, 等. 装药不耦合系数对初始地应力下岩石爆破裂纹扩展影响的试验研究[J]. 爆破, 2022, 39(04): 1-9. 
XU Ying, GU Keke, GE Jinjin, et al. Experimental study on effect of charge decoupling Coefficient on crack propagation in rock by blasting under initial In-situ stress[J]. Blasting, 2022, 39(04): 1-9.
[6] 洪志先, 郭超, 熊宏武, 等. 侧压系数对不耦合装药爆破影响数值模拟研究[J]. 爆破, 2019, 36(03): 65-75+89 
HONG Zhixian, GUO Chao, XIONG Hongwu, et al. Numerical study of impact of lateral pressure coefficient on decoupling charge blasting[J]. Blasting, 2019, 36(03): 65-75+89.
[7] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析[M]. 北京: 清华大学出版社, 2005:3-22. 
SHI Dangyong, LI Yuchun, ZHANG Shengming. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1[M]. Beijing: Tsinghua University Press, 2005:3-22.
[8] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure [C]. 1th International Symposium on Ballistic, Quebec City. Canada, 1993: 591―600.
[9] 方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法[J]. 工程力学, 2014, 31(03): 197-204. 
FANG Qin, KONG Xiangzhen, WU Hao, et al. Determination of parameters of Holmquist-Johnson-Cook rock constitutive model[J]. Engineering Mechanics, 2014, 31(03): 197-204.
[10] Banadaki M M D. Stress-wave induced fracture in rock due to explosive action[D]. Toronto: University of Toronto, 2010.
[11] 闻磊, 李夕兵, 吴秋红, 等. 花岗斑岩Holmquist-Johnson-Cook本构模型参数研究[J]. 计算力学学报, 2016, 33(05): 725-731. 
WENG Lei, LI Xibing, WU Qiuhong, et al. Parametric study of the Holmquist-Johnson-Cook ontological model for granitic porphyries[J]. Chinese Journal of Computational Mechanics, 2016, 33(05): 725-731.
[12] 俞茂宏, 昝月稳, 范文, 等. 20世纪岩石强度理论的发展—纪念Mohr-Coulomb强度理论100周年[J]. 岩石力学与工程学报, 2000, (05): 545-550. 
YU Maohong, ZAN Yueweng, FAN Wen, et al. The development of rock strength theory in the 20th century-commemorating the 100th anniversary of Mohr-Coulomb strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, (05): 545-550.
[13] 李硕标, 薛亚东. Hoek-Brown准则改进及应用[J]. 岩石力学与工程学报, 2016, 35(S1): 2732-2738.
LI Shuobiao, XUE Yadong. Modification of Hoek-Brown criterion and its application[J]. Chinese Journal ofRock Mechanics and Engineering, 2016, 35(S1): 2732-2738.
[14] Mogi K. Experimental rock mechanics[M]. London: Taylor and Francis Group, 2007:17-31.
[15] 叶序双. 爆炸力学基础[M]. 南京: 工程兵工程学院, 2004:57-69. 
YE Xushuang. Fundamentals of explosive mechanics[M]. Nanjing: College of Engineering, 2004:57-69.
[16] John O, Hallquist. LS-DYNA 970 Keyword User’s Manual[M]. America: Livermore Software Technology Corporation, 2003.
[17] Alia A, Souli M. High explosive simulation using multi-material formulations[J]. Applied Thermal Engineering, 2006, 26(10): 1032-1042.
[18] 吴磊. 不同爆破条件下爆破应力波作业特征及破碎效果的数值研究[D]. 四川: 西南交通大学, 2021: 31-34. 
WU Lei. Numerical study on operational characteristics of blasting stress wave and crushing effect under different blasting conditions[D]. Sichuan: Southwest Jiaotong University, 2021: 31-34.
[19] 杜俊林, 罗强, 宗琦. 空气不耦合装药爆破孔壁冲击压力分析[J]. 西安科技大学学报, 2005, (03): 306-310. 
DU Junlin, LUO Qiang, ZONG Qi. Analysis on preliminary shock pressure on borehole of air-de-coupling charging[J]. Journal of Xi’an University of science and Technology. 2005, (03): 306-310.
[20] 戴俊. 岩石动力学特征与爆破理论[M]. 北京:冶金工业出版社, 2013:76-89. 
DAI Jun. Rock dynamic characteristics and blasting theory[M]. Beijing: Metallurgical Industry Press, 2013:76-89.
[21] 陈士海, 初少凤, 宫嘉辰, 等. 高地应力下砂岩隧道围岩爆破振动响应研究[J]. 振动与冲击, 2022, 41(17): 73-80+92. 
CHEN Shihai, CHU Shaofeng, GONG Jiachen, et al. Blasting vibration response of sandstone tunnel surrounding rock under high ground stress[J]. Journal of Vibration and Shock, 2022, 41(17): 73-80+92.
[22] YANG J C, LIU K W, LI X D, et al. Stress initialization methods for dynamic numerical simulation of rock mass with high in situ stress[J]. Journal of Central South University, 2020, 27(10): 3149–3162.
[23] YI C P, Johansson D, Greberg J. Effects of in-suit stresses on the fracturing of rock by blasting[J]. Computers and Geotechnics, 2018, 104(12): 321-330.
[24] YANG L Y, YANG A Y, CHEN S Y, et al. Model experimental study on the effects of in situ stresses on pre-splitting blasting damage and strain development[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138(10): 104587.
[25] 马军, 汪旭光, 李祥龙, 等. 不耦合装药刻痕爆破裂纹的动态力学特征及损伤分形规律实验[J]. 兵工学报, 2023, 44(12): 3676-3686. 
MA Jun, WANG Xunguang, LI Xianglong, et al. Experiment on Dynamic Mechanical Characteristics and Damage Fractal Law of Crack in Decoupled Charge Scratch Blasting[J]. Acta Armamentarii, 2023, 44(12): 3676-3686.
[26] 潘强, 张继春, 石洪超, 等. 单孔不耦合装药爆破的岩体损伤分布特征研究[J]. 振动与冲击, 2019, 38(18): 264-269. 
PAN Qiang, ZHANG Jichun, SHI Hongchao, et al. Distribution characteristics of the rock mass damage caused by single-hole decoupling charge blasting[J]. Journal of Vibration and Shock, 2019, 38(18): 264-269.
[27] ZUO J J, YANG R S, GONG M, et al. Fracture characteristics of iron ore under uncoupled blast loading[J]. International Journal of Mining Science and Technology, 2022, 32(4):657-667.
[28] 钱七虎. 岩石爆炸动力学的若干进展[J]. 岩石力学与工程学报, 2009, 28(10): 1945-1968. 
QIAN Qihu. Some advances in rock blasting dynamics[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945-1968.

PDF(2950 KB)

173

Accesses

0

Citation

Detail

段落导航
相关文章

/