轴承在服役过程中,受工作环境的影响,外部载荷存在不同形式的波动,影响了保持架的运动稳定性,进而降低了轴承的运转精度及寿命。本文综合考虑了滚动体与保持架间的粘滞阻尼效应、润滑油的流体动压作用,以及外圈与轴承座的振动耦合效应,建立了圆柱滚子轴承保持架三自由度的动力学分析模型。研究了载荷波动类型、载荷波动幅值以及载荷波动频率对保持架运动稳定性的影响。结果表明:矩形载荷波动下保持架质心轨迹最为紊乱,保持架质心速度偏差比最大;载荷波动频率、幅值越大,保持架质心轨迹越紊乱,保持架质心速度偏差比也越大。本文研究对于评估保持架断裂和磨损的内在机理、优化轴承运行精度、延长轴承寿命等具有重要研究意义。
Abstract
Bearings in the service process, by the impact of the working environment, the external load there are different forms of fluctuations, affecting the stability of the movement of the cage, which in turn reduces the operating accuracy and life of the bearing. In this paper, the dynamic analysis model of cylindrical roller bearing cage with three degrees of freedom is established by comprehensively considering the viscous damping effect between the rolling body and cage, the hydrodynamic pressure effect of lubricating oil, and the vibration coupling effect between the outer ring and the bearing housing. The effects of the type of load fluctuation, the amplitude of load fluctuation and the frequency of load fluctuation on the motion stability of the cage are investigated. The results show that the centre of mass trajectory of cage is the most turbulent under rectangular load fluctuation, and the deviation ratio of the centre of mass velocity of cage is the largest; the larger the frequency and amplitude of load fluctuation are, the more turbulent is the trajectory of the centre of mass of cage, and the larger the deviation ratio of the centre of mass velocity of cage is. The research in this paper is of great significance for evaluating the intrinsic mechanism of cage fracture and wear, optimising the operating accuracy of bearings, and prolonging the life of bearings.
关键词
滚动轴承 /
载荷波动 /
保持架 /
动力学 /
稳定性
{{custom_keyword}} /
Key words
Rolling bearings /
Load fluctuations /
Cage /
Vibration characteristics /
Stability
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢宏浩,牛蔺楷,肖飞,等. 裂纹故障下轴承浪型保持架的动态特性分析[J]. 机电工程,2021,38(11):1458-1464.
XIE Hong-hao, NIU Lin-kai, XIAO Fei, et al. Analysis of dynamic characteristics of bearing wave cages with crack faults [J]. Journal of Mechanical & Electrical Engineering, 2021, 38(11): 1458-1464.
[2] KINGSBURY E P. Torque variations in instrument ballbearings [J]. TRIBOLOGY TRANSACTIONS, 1965, (8): 435–441.
[3] WALTERS C T. The Dynamics of ball bearings [J]. Journal of Tribology, 1970, 93(1): 1–10.
[4] GUPTA K P. Modeling of Instabilities Induced by Cage Clearances in Cylindrical Roller Bearings [J]. TRIBOLOGY TRANSACTIONS, 2008, 34(1): 1-8.
[5] DOMLEY D A, BOESIGER A E, LOEWENTHAL S. An Analytical and Experimental Investigation of Ball Bearing Retainer Instabilities [J]. Journal of Tribology, 2008, 114(3): 530-538.
[6] 杨咸启,刘文秀,李晓玲. 高速滚子轴承保持架动力学分析[J]. 轴承,2002,(07):1-5.
YANG Xian-qi, LIU Wen-xiu, LI Xiaoling. Dynamics Analysis on Cage of High Speed Roller Bearing [J]. Bearing, 2002, (07):1-5.
[7] 崔立,苏银,任德余等. 高速圆柱滚子轴承保持架动态性能影响因素分析[J]. 机床与液压,2021,49(14):17-23.
CUI Li,SU Yin,REN De-yu, et al. Analysis of Influencing Factors on Dynamic Performance of High Speed [J]. MACHINE TOOL & HYDRAULICS, 2021, 49(14): 17-23.
[8] YAN S, QU Q, LIU M, et al. Investigation on cage motions in high speed angular contact ball bearing with clearance fit between the outer ring and housing[J].Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2023, 237(1): 86-97.
[9] LI H, LIU H, LIU Y, et al. On the dynamic characteristics of ball bearing with cage broken [J]. Industrial Lubrication and Tribology, 2020, 72(7).
[10] JIANG Y, HUANG W, WANG W, et al. A complete dynamics model of defective bearings considering the three-dimensional defect area and the spherical cage pocket [J]. Mechanical Systems and Signal Processing, 2023, 185.
[11] 屈驰飞,杨震,谢鹏飞,等. 变速运转球轴承保持架的动态性能仿真分析[J]. 轴承,2017,(05):26-29.
QU Chi-fei, Yang Zhen, Xie Peng-fei, et al. Simulation Analysis of Dynamic Performance of Ball Bearing Cage with Variable Speed Operation [J]. Bearing, 2017, (05): 26-29.
[12] TU W, LIANG J, YU W, et al. Motion stability analysis of cage of rolling bearing under the variable-speed condition [J]. Nonlinear Dynamics, 2023, 111(12): 11045-11063.
[13] 刘秀海. 高速滚动轴承动力学分析模型与保持架动态性能研究[D]. 大连理工大学,2011.
LIU Xiu-hai. High-speed rolling bearing dynamic analysis model and cage dynamic performance research [D]. Dalian University of Technology, 2011.
[14] SHI Z,LIU J. An improved planar dynamic model for vibration analysis of a cylindrical roller bearing[J]. Mechanism and Machine Theory. 2020, 153.
[15] HARRIS A T , Kotzalas N M. Advanced Concepts of Bearing Technology [M].Taylor and Francis;CRC Press, 2006.
[16] 邓四二,顾金芳,崔永存,等. 高速圆柱滚子轴承保持架动力学特性分析[J]. 航空动力学报,2014,29(01): 207-215.
DENG Si-er, GU Jin-fang, CUI Yong-cun, et al. Dynamic characterisation of high-speed cylindrical roller bearing cages [J]. Journal of Aerodynamics. 2014, 29(01): 207-215.
[17] MACHADO M, MOREIRA P, FLORES P, et al. Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory [J]. Mechanism and machine theory, 2012, 53: 99-121.
[18] TU W, SHAO Y, MECHEFSKE C K. An analytical model to investigate skidding in rolling element bearings during acceleration [J]. Journal of mechanical science and technology, 2012, 26: 2451-2458.
[19] ZHANG W ,DENG S ,CHEN G , et al. Influence of Lubricant Traction Coefficient on Cage's Nonlinear Dynamic Behavior in High-Speed Cylindrical Roller Bearing [J]. Journal of Tribology, 2017, 139(6).
[20] 梁杰. 变速工况下滚动轴承保持架动力学特性研究[D]. 华东交通大学,2022.
LIANG Jie. Study on the dynamic characteristics of rolling bearing cage under variable speed
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}