A fractional piecewise nonlinear suspension was proposed to address the low-frequency vibration isolation issue for heavy-duty vehicles against various payloads. Variable pitch springs were used to produce nonlinear restoring force in the suspension and were combined with linear springs to construct a linear-nonlinear coupled spring construction. Caputo fractional-order model was used to represent the viscoelastic characteristics of the damper. The vibration transmissibility function of the suspension was established by the average method. The stability of the equilibrium point and the stability condition of the steady solution were analyzed. The influence of the initial gap and the nonlinear stiffness on the vibration isolation performance was analyzed under different payloads. A practical suspension model was fabricated to validate the correctness of the theoretical results, utilizing vibration sweep-frequency experimentations. The results show that the proposed suspension exhibits several reduction regions of the transmissibility with different initial gaps and nonlinear stiffness parameters; the reduction of the initial gap and the increase of the nonlinear stiffness can both increase the number of the reduction region. The vibration experiments show that the reasonable adjustment of the initial gap and nonlinear stiffness can situate the response property of the suspension in the reduction region, reducing the vibration transmissibility and improving the vibration isolation performance of the suspension. This study has a considerable significance in improving the passive suspension structure of heavy-duty vehicles and modifying the running stability and road friendliness.
WANG Cuiyan1, SHI Shaoxuan2, CHEN Enli1.
Vibration response characteristics of piecewise nonlinear suspension with fractional order under variable load[J]. Journal of Vibration and Shock, 2025, 44(3): 26-34
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈仲生,曹军义,秦朝烨,等.汽车悬架同步振动抑制与能量收集综述与展望[J].机械工程学报,2022,58(20):3-26.
CHEN Zhong-sheng, CAO Jun-yi, QIN Zhao-ye, et al. Simultaneous vibration suppression and energy harvesting of vehicle suspension systems: status and prospects [J]. Journal of Mechanical Engineering, 2022, 58(20):3-26.
[2] 韩彦伟,申明亮,高梦圆,等.人车路耦合系统的非线性振动特性及试验研究[J].振动工程学报,2024,37(1):60-70.
HANYan-wei, SHEN Ming-liang, GAO Meng-yuan, et al. Nonlinear vibration characteristics and experimental validation of a human-vehicle-road coupled system [J]. Journal of Vibration Engineering, 2024, 37(1):60-70.
[3] 杨绍普,张俊宁,路永婕,等.汽车-道路相互作用研究进展[J].机械工程学报,2021,57(12):1-17.
YANG Shao-pu, ZHANG Jun-ning, LU Yong-jie, et al. Research progress of vehicle-pavement interaction [J]. Journal of Mechanical Engineering, 2021, 57(12):1-17.
[4] 冯桂珍,李韶华,赵文忠. 电动汽车-路面系统机电耦合建模及非线性振动分析[J].振动与冲击,2021,40(14):18-26+76.
FENG Gui-zhen, LI Shao-hua, ZHAO Wen-zhong. Electromechanical coupling modelling and nonlinear vibration analysis of an electric vehicle-road system [J]. Journal ¬of Vibration and Shock, 2021, 40(14):18-26+76.
[5] 《中国公路学报》编辑部.中国汽车工程学术研究综述•2023[J].中国公路学报,2023,36(11):1-192.
Editorial department of China Journal of Highway and Transport. ReviewonChina’s automotive engineering research progress:2023 [J]. China Journal of Highway and Transport, 2023, 36(11):1-192.
[6] 张婉洁,牛江川,,申永军,等.一类阻尼控制半主动隔振系统的解析研究[J].力学学报,2020,52(6):1743-1754.
ZHANG Wan-jie, NIU Jiang-chuan, SHEN Yong-jun, et al. Dynamical analysis on a kind of semi-active vibration isolation systems with damping control [J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(6):1743-1754.
[7] 张文静,牛江川,申永军,等.基于分数阶磁流变液阻尼器模型的车辆悬架组合控制[J].力学学报,2021,53(7):2037-2046.
ZHANGWen-jing, NIU Jiang-chuan, SHEN Yong-jun, et al. Combined control of vehicle suspension with fractional-order magnetorheological fluid damper model [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7):2037-2046.
[8] 常宇健,田沃沃,金格,等.基于微分几何法的非线性分数阶悬架主动控制[J].振动与冲击,2021,40(4):270-276.
CHANG Yu-jian, TIAN Wo-wo, JIN Ge, et al. Active control of nonlinear suspension with fractional order based on a differential geometry method [J]. Journal ¬of Vibration and Shock, 2021, 40(4):270-276.
[9] Wang S, Hua L, Yang C, et al. Applications of incremental harmonic balance method combined with equivalent piecewise-linearization on vibrations of nonlinear stiffness systems [J]. Journal of Sound and Vibration,2019,441:111-125.
[10] 张义民,贺向东,闻邦椿.车辆用钢板弹簧的可靠性优化设计[J].工程设计学报,2002, 9(1):4-6.
ZHANG Yi-min, HE Xiang-dong, WEN Bang-chun. Reliability optimization design for multi-leaf spring of vehicle [J]. Chinese Journal of Engineering Design, 2002, 9(1):4-6.
[11] 李凌阳,张云清,覃刚,等.钢板弹簧建模方法研究[J].汽车工程,2013,35(7):660-666.
LI Ling-yang, ZHANG Yun-qing, QIN Gang, et al. A research on the modeling methods of leafspring [J]. Automotive Engineering, 2013, 35(7):660-666.
[12] 邹海荣,黄其柏.基于非线性的汽车钢板弹簧断裂问题分析[J].华中科技大学学报(自然科学版),2003, 31(3):96-98.
ZOU Hai-rong, HUANG qi-bai. Study on the fracture of automobile leaf spring by CAE based on nonlinear analysis [J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2003, 31(3):96-98.
[13] 李思杰,罗世辉,王波,等.基于叠加模型的橡胶元件动态特性分析[J].振动与冲击,2020,39(8):264-270.
LISi-jie, LUO Shi-hui, WANG Bo, et al. Dynamic characteristics analysis of rubber components based on an overlay model [J]. Journal ¬of Vibration and Shock, 2020, 39(8):264-270.
[14] 丁智平,曾家兴,林胜,等.橡胶弹簧结构强度分析及参数优化[J].振动与冲击,2019,38(12):246-251.
DING Zhi-ping, ZENG Jia-xing, LIN Sheng, et al. Structure strength analysis and parameter optimization of rubber spring [J]. Journal ¬of Vibration and Shock, 2019, 38(12):246-251.
[15] 马汝建,李桂喜,赵东.分段线性弹簧振动系统的非线性分析[J].机械强度,2007, 29(5):852-855.
MA Ru-jian, LI Gui-xi, ZHAODong. Nonlinear analysis of vibration systems with subsectional linear springs [J]. Journal of Mechanical Strength, 2007, 29(5):852-855.
[16] 史文库,陈龙,陈志勇,等.分段刚度双质量飞轮非线性振动特性研究[J].汽车工程,2019,41(4):417-425.
SHI Wen-ku, CHEN Long, CHEN Zhi-yong, et al. A research on nonlinear vibration characteristics of piecewise stiffness dual mass flywheel [J]. Automotive Engineering, 2019, 41(4):417-425.
[17] 倪德,朱如鹏,鲍和云,等.基于分段解析法的智能弹簧隔振系统基础激励响应分析[J].振动与冲击,2013,32(15):161-167.
NI De, ZHU Ru-peng, BAO He-yun, et al. Response analysis of smart spring vibration isolation system under harmonic base excitation using piecewise analytic method [J]. Journal ¬of Vibration and Shock, 2013, 32(15):161-167.
[18] 吴志强,雷娜. 分段线性系统的振动性能分析[J]. 振动与冲击,2015, 34(18):94-99.
WU Zhi-qiang, Lei Na. Vibration performance analysis of piecewise linear system [J]. Journal ¬of Vibration and Shock, 2015, 34(18):94-99.
[19] 贾启芬,于雯,刘习军,等. 汽车悬架系统的分段线性非线性振动机理的研究[J]. 工程力学,2005, 22(1):88-92.
JIA Qi-fen, YU Wen, LIU Xi-jun, et al. Dynamic Characteristics of Bilinear Suspension System of Vehicles [J]. Engineering Mechanics, 2005, 22(1):88-92.
[20] 章新,孙大刚,宋勇,等. 基于非线性特征的黏弹性悬架系统减振特性分析[J]. 农业工程学报,2012, 28(9):47-51.
ZHANG Xin, SUN Da-gang, SONG Yong, et al. Analysis onvibration reduction characteristics of viscoelastic suspensionsystem based on nonlinear behavior [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(9):47-51.
[21] 宋勇,刘林鑫,李占龙,等.含圆弧形缓冲结构的仿袋鼠腿悬架建模与行为特性研究[J].西安交通大学学报,2021,55(9):28-38.
SONG Yong, LIU Lin-xin, LI Zhan-long, et al. Research on modeling and behavioral characteristics of bionic kangaroo leg suspension with circular arc-buffer structures [J]. Journal of Xi'an Jiaotong University, 2021, 55(9):28-38.
[22] 宋勇,陆浩,李占龙,等.非线性商用车仿生悬架等偏频等高度设计[J].中国机械工程,2023,34(1):84-94.
SONG Yong, LU Hao, LI Zhan-long, et al. Constant partial frequency and constant height design of nonlinear commercial vehicle bionic suspensions [J]. China Mechanical Engineering, 2023, 34(1):84-94.
[23] 王勇,季明珠,张步云.分数阶惯容悬架动态特性研究[J].噪声与振动控制,2023,43(1):12-18.
WANG Yong, JI Ming-zhu, ZHANG Bu-yun. Dynamic characteristics analysis of fractional-order inerter-based suspension systems [J]. Noise and Vibration Control, 2023, 43(1):12-18.
[24] 李阳,温华兵,刘伟,等.间隙非线性对惯容-橡胶复合隔振器位移响应的影响研究[J].振动与冲击,2020,39(17):268-274.
LIYang, WEN Hua-bing, LIU Wei, et al. Effects of gap nonlinearity on displacement response of inerter-rubber vibration isolator [J]. Journal ¬of Vibration and Shock, 2020, 39(17):268-274.
[25] 常宇健,孙亚婷,陈恩利,等.双频激励下含分数阶非线性汽车悬架系统的混沌研究[J].振动工程学报,2021,34(6):1198-1206.
CHANGYu-jian, SUN Ya-ting, CHEN En-li, et al. Chaos of vehicle suspension system with fractional order nonlinearity under dual frequency excitation [J]. Journal of Vibration Engineering, 2021, 34(6):1198-1206.
[26] 常宇健,田沃沃,陈恩利,等. 基于分数阶微分的金属橡胶迟滞非线性动力学模型[J]. 振动与冲击,2020, 39(14):233-241.
CHANG Yu-jian, TIAN Wo-wo, CHEN En-li, et al. Dynamic model for the nonlinear hysteresis of metal rubber based on thefractional-order derivative [J]. Journal of Vibration and Shock, 2020, 39(14): 233-241.
[27] 薛定宇. 分数阶微积分与分数阶控制[M].北京:科学出版社,2018.
XUE Ding-yu. Fractional Calculus and Fractional-order Control. Beijing:China Science Publishing, 2018.
[28] Wang M H, Chen E L, Tian R L, et al. The nonlinear dynamics characteristics and snap-through of an SD oscillator with nonlinear fractional damping[J]. Fractal and Fractional, 2022, 6(9):493-493.
[29] Shen Y J, Yang S P, Xing H J, et al. Primary resonance of Duffing oscillator with fractional-order derivative[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17:3092-3100.
[30] Shen Y J, Li H, Yang S P, et al. Primary and subharmonic simultaneous resonanceof fractional-order Duffing oscillator[J]. Nonlinear Dynamics, 2020, 102:1485-1497.