本文以统计能量分析理论结合试验方法,以碳纤维加筋板为研究对象,探究了不同温度下的结构高频声振响应规律。首先开展了热振试验并结合相关理论辨识了不同温度下的加筋板统计能量参数,然后构建了温度影响下的加筋板高频声振耦合统计能量模型,进一步开展了基于混响室噪声载荷的常温加筋板动响应试验,验证了所建模型的准确性,最后探究了温度对加筋板结构高频声振响应的影响规律。结果表明:温度升高将使得结构模态密度和内损耗因子呈现上升趋势;结构模态密度增大将使得结构声振响应增大,内损耗因子增大会使得结构响应减小;温度上升对结构高频范围内不同频率处声振响应影响不同,主要取决于该频率处模态密度和内损耗因子的增量大小。
Abstract
In this paper, the statistical energy analysis theory combined with the experimental method is used to explore the high-frequency acoustic and vibration response of the structure at different temperatures. Firstly, the thermal vibration test was carried out and the statistical energy parameters of the stiffened plate at different temperatures were identified in combination with the relevant theories, and then the statistical energy model of the high-frequency acoustic vibration coupling of the stiffened plate under the influence of temperature was constructed, and the dynamic response test of the stiffened plate at room temperature based on the noise load of the reverberation chamber was further carried out to verify the accuracy of the model, and finally the influence of temperature on the high-frequency acoustic and vibrating response of the stiffened plate structure was explored.The results show that the increase of temperature will increase the modal density and internal loss factor of the structure. The increase of the modal density of the structure will increase the acoustic and vibration response of the structure, and the increase of the internal loss factor will reduce the response of the structure. The temperature rise has different effects on the acoustic and vibration response at different frequencies in the high-frequency range of the structure, which mainly depends on the increment of the modal density and the internal loss factor at the frequency.
关键词
热效应 /
复合材料加筋板 /
统计能量分析 /
高频声振响应
{{custom_keyword}} /
Key words
thermal effect /
composite stiffened plate /
statistical energy analysis /
high-frequency vibroacoustic response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BLEVINS R D, BOFILIOS D, HOLEHOUSE I, et al. Thermovibro-acoustic loads and fatigue of hypersonic flight vehicle structure: AFRL-RB-WP-TR-2009-3139[R]. Chula Vista, California: [s.n.], 2009.
[2] 谢久林,杨松,张俊刚.航天器声振动力学环境响应分析[J].航天器环境工程,2006,23(2): 83-89.
XIE Jiulin,YANG Song,ZHANG Jungang. The Response Prediction of the Spacecraft under Acoustic Vibration Environment[J]. Spacecraft Environment Engineering, 2006, 23(2): 83-89.
[3] 吴江.飞航导弹热防护技术发展趋势[J].强度与环境,2009,36(1): 57-63.
WU Jiang. Development of thermal protection techniques for aerodynamic missile [J]. Structure & environment engineering,2009, 36(1):.
[4] BOT A L, CARCATERA A, MAZUYER D. Statistical vibroacoustics and entropy concept [J]. Entropy,2010, 12(12) : 2418-2435.
[5] LYON R H. Statistical energy analysis of dynamical systems:theory and applications [M]. Cambridge, MA: MIT Press,1975.
[6] Jingyong Han, Kaiping Yu, Xiangyang Li, et al. Modal density and mode counts of sandwich panels in thermal environments [J]. Composite Structures, 2016, 153: 69-80.
[7] 张鹏,费庆国,李彦斌,等. 材料物性热效应对统计能量分析参数的影响[J]. 振动与冲击,2016,35(24): 73-78.
ZHANG Peng, FEI Qingguo, LI Yanbin, et al. Effect of temperature dependent material property on statistical energy analysis parameters [J]. Journal of Vibration and Shock, 2016,35(24) : 73-78.
[8] 陈强, 张鹏, 李彦斌, 等. 热环境下长宽比对 L 型折板统计能量分析参数的影响研究[J]. 振动与冲击, 2018, 37(4) : 191-196.
CHEN Qiang,ZHANG Peng,LI Yanbin,et al. Effect of aspect ratio on statistical energy analysis parameters of Lshaped folded plate under thermal environment [J]. Journal of Vibration and Shock,2018,37( 4) : 191-196.
[9] Qiang Chen, Qingguo Fei, Yanbin Li, Shaoqing Wu, and Peng Zhang. Prediction of statistical energy analysis parameters in thermal environment. Journal of Spacecraft and Rockets. 2019, 56(3): 687-694.
[10] DU M,GENG Q,LI Y. Vibrational and acoustic responses of a laminated plate with temperature gradient along the thickness[J]. Composite Structures,2016,157: 483-493.
[11] Zhang W, Chen H, Zhu D, et al. The thermal effects on high-frequency vibration of beams using energy flow analysis [J]. Journal of Sound and Vibration, 2014, 333(9): 2588-2600.
[12] Wang Y, Chen H, Zhou H. A fatigue life estimation algorithm based on Statistical Energy Analysis in high-frequency random processes [J]. International Journal of Fatigue, 2016, 83: 221-229.
[13] 王晨,陈海波,王用岩,等.温度效应对铝合金壁板高频声振疲劳寿命的影响研究[J].应用力学学报,2018,35(4):701-708.
Wang Chen, Chen Haibo, Wang Yongyan, et al. Thermal effect on the fatigue life of aluminum panel under high-frequency acoustic excitation[J]. Chinese Journal of Applied Mechanics, 2018,35(4):701-708.
[14] 姚德源, 王其政. 统计能量分析原理及其应用[M]. 北京: 北京理工大学出版社, 1997.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}