输电塔悬挂拉索阻尼器振动控制设计方法及减振效果

曹枚根1, 程义凯1, 杨德栋2, 郑翀2, 钱俊峰1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 35-44.

PDF(4169 KB)
PDF(4169 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 35-44.
振动理论与交叉研究

输电塔悬挂拉索阻尼器振动控制设计方法及减振效果

  • 曹枚根*1,程义凯1,杨德栋2,郑翀2,钱俊峰1
作者信息 +

Vibration control design method and vibration reduction effect of suspension cable dampers for transmission tower

  • CAO Meigen*1, CHENG Yikai1, YANG Dedong2, ZHENG Chong2, QIAN Junfeng1
Author information +
文章历史 +

摘要

输电塔作为受风荷载控制的高耸空间钢结构,强风作用是导致沿海地区输电塔振动破坏,甚至倒塌的重要原因。针对目前输电塔风振控制技术适应性不足,提出了一种悬挂拉索阻尼器的输电塔振动控制技术。首先,分析了悬挂拉索阻尼器中拉索和自复位阻尼器的布置形式,给出了体内拉索及阻尼器布置方式的设计方法。开展了悬挂拉索阻尼器的参数分析,分析了自复位性能和滞回性能,给出了阻尼器质量、刚度、阻尼系数等参数的设计方法。依据参数设计方法中得出的参数,设计了一种非对称自复位阻尼器,并开展了滞回性能试验研究。然后,开展了简化力学模型下的频域分析,得到参数设计的原则:在自复位阻尼器刚度小于拉索刚度的情况下,提高自复位阻尼器的阻尼比,再按照参数设计方法确定其他参数。以温州沿海线路工程中典型猫头塔为研究对象,建立输电塔的有限元模型,通过风振响应分析验证了悬挂拉索阻尼器的振动控制效果,塔顶的加速度响应均方根值下降了13.6%。

Abstract

Transmission tower is a tall space steel structure controlled by wind load, and the strong wind is an important cause of vibration damage and even collapse of transmission tower in coastal areas. In view of the lack of adaptability of current wind vibration control technology of transmission tower, a new vibration control technology of transmission tower with suspension of cable damper is proposed. Firstly, the layout of cable and self-centering damper in suspension cable damper is analyzed, and the design method of internal cable and damper layout is given. The parameters of the suspension cable damper are analyzed, the self-centering performance and hysteresis performance are analyzed, and the design methods of the damper parameters such as mass, stiffness and damping coefficient are given. According to the parameters obtained in the parameter design method, an asymmetric self-centering damper is designed, and the hysteretic performance test is carried out. Then, the frequency domain analysis under the simplified mechanical model is carried out, and the principle of parameter design is obtained: when the stiffness of the self-centering damper is less than the cable stiffness, the damping ratio of the self-centering damper is increased, and other parameters are determined according to the parameter design method. Taking the typical cathead tower in Wenzhou coastal line project as the research object, the finite element model of the transmission tower is established, and the vibration control effect of suspended cable dampers is verified by wind vibration response analysis. The root-mean-square value of the acceleration response of the tower top decreases by 13.6%.

关键词

输电塔 / 自复位阻尼器 / 预应力拉索 / 风振控制

Key words

Transmission towers / Self-centering dampers / Prestressed cables / Wind vibration control

引用本文

导出引用
曹枚根1, 程义凯1, 杨德栋2, 郑翀2, 钱俊峰1. 输电塔悬挂拉索阻尼器振动控制设计方法及减振效果[J]. 振动与冲击, 2025, 44(3): 35-44
CAO Meigen1, CHENG Yikai1, YANG Dedong2, ZHENG Chong2, QIAN Junfeng1. Vibration control design method and vibration reduction effect of suspension cable dampers for transmission tower[J]. Journal of Vibration and Shock, 2025, 44(3): 35-44

参考文献

[1]Lu, Chenghao, Xing Ma, and Julie E. Mills. "Modeling of retrofitted steel transmission towers." Journal of Constructional Steel Research 112 (2015): 138-154.
[2]杨正,谢强,张戬等.输电塔T形组合角钢加固试验及理论分析[J].电力电容器与无功补偿,2020,41(03):147-155.
Yang Zheng, Xie Qiang, Zhang Jian, et al. Reinforcement test and theoretical analysis of T-shaped composite angle steel of transmission tower[J]. Power Capacitor & Reactive Power Compensation,2020,41(03):147-155.)
[3]章东鸿,崔磊.特高压Y型截面角钢输电塔设计研究[J].空间结构,2015,21(04):54-59.
ZHANG Donghong, CUI Lei. Design and study of UHV Y-section angle steel transmission tower[J]. Spatial Structure, 2015,21(04):54-59.
[4]苏子威,李敏生,严斌等.新型构件并联法加固角钢输电塔试验研究及设计建议[J].建筑结构,2020,50(06):95-98.
Su Ziwei, Li Minsheng, Yan Bin, et al. Experimental study and design suggestions of new component parallel method to reinforce angle steel transmission tower[J]. Building Structure, 2020,50(06):95-98.
[5]梁刚,李桂花,耿娜娜等.基于新型夹具的双角钢十字组合构件偏压承载力研究[J].自然灾害学报,2022,31(06):113-124.
Liang Gang, Li Guihua, Geng Nana, et al. Study on Bias Bearing Capacity of Double Angle Steel Cross Composite Members Based on New Fixtures[J]. Journal of Natural Disasters, 2022,31(06):113-124.
[6]肖琦,王永杰,肖茂祥,等.横隔面在高压输电塔抗风设计中的作用分析[J].东北电力大学学报,2011,31(Z1):32-36.
XIAO Qi, WANG Yongjie, XIAO Maoxiang, et al. Analysis of the role of transverse surface in the wind resistance design of high-voltage transmission tower[J]. Journal of Northeast Electric Power University,2011,31(Z1):32-36.
[7]田利,罗靖宇,周梦瑶等.高压输电线路减振控制研究综述[J].自然灾害学报,2022,31(05):1-12.
Tian Li, Luo Jingyu, Zhou Mengyao, et al. Survey on vibration damping control of high-voltage transmission lines[J]. Journal of Natural Disasters,2022,31(05):1-12.
[8]曹枚根,周福霖,徐忠根等.大跨越输电塔线体系减震控制分析研究[J].电网技术,2007(14):45-51.
Cao Meigen, Zhou Fulin, Xu Zhonggen, et al. Analysis and analysis of damping control of large-span transmission tower line system[J]. Power System Technology,2007(14):45-51.]
[9]Matsumoto, M., Kasai, A., Mazda, T.,et al. Study on improvement of seismic performance of transmission tower using viscous damper[J]. Journal of Civil Engineering and Architecture, 2017,11(5), 455-467.
[10]翟长海,武钢,李爽等. 大跨越输电塔-线体系的平面内塔-线耦合效应与TMD减震控制研究[J].振动工程学报, 2012,25(04):431-438.
Zhai Changhai, Wu Gang, Li Shuang, et al. Study on In-plane Tower-Line Coupling Effect and TMD Damping Control of Long-span Transmission Tower-Line System[J]. Journal of Vibration Engineering,2012,25(04):431-438.
[11] Tian L ,Gao G D,Qiu C X , et al. Effect of hysteresis properties of shape memory alloy-tuned mass damper on seismic control of power transmission tower[J]. Advances in Structural Engineering, 2019, 22(4): 1007-1017.
[12]贺业飞,楼文娟,孙炳楠,等.悬挂质量摆对大跨越输电塔的风振控制[J].浙江大学学报(工学版),2005,(12):1891-1896.
He Yefei, Lou Wenjuan, Sun Bingnan, et al. Wind Vibration Control of Large-Span Transmission Towers Using Suspended Mass Pendulums [J]. Journal of Zhejiang University (Engineering Science Edition), 2005, (12): 1891-1896.
[13]曹丹京,金树,王子龙,等.悬挂质量摆对大跨越输电塔-线体系的风振控制分析[J].防灾减灾工程学报,2013,33(05):561-565.
Cao Danjing, Jin Shu, Wang Zilong, et al. Wind Vibration Control Analysis of Suspension Mass Pendulum on Large-span Transmission Tower-Line System[J]. Chinese Journal of Disaster Prevention and Mitigation Engineering,2013,33(05): 561-565.
[14]侯洁,霍林生,李宏男.非线性悬吊质量摆对输电塔减振控制的研究[J].振动与冲击,2014,33(03):177-181.
HOU Jie,HUO Linsheng,LI Hongnan. Study on Vibration Reduction Control of Transmission Tower by Nonlinear Suspended Mass Pendulum[J]. Journal of Vibration and Shock,2014,33(03):177-181.
[15]侯洁. 非线性悬吊质量摆对高耸结构减振控制的研究[D].大连理工大学,2015.
HOU Jie. Study on vibration damping control of nonlinear suspension mass pendulum on towering structure[D]. Dalian University of Technology, 2015.
[16]王奇,李宏男,张鹏.弹簧摆碰撞减震系统计算模型研究[J].沈阳建筑大学学报(自然科学版),2018,34(02):222-228.
WANG Qi, LI Hongnan, ZHANG Peng. Research on Computational Model of Spring-pendulum Collision Damping System[J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2018, 34(02): 222-228.
[17]张若愚,曹枚根,毛宇,等.增设拉线对特高压直流复合避雷器地震响应的影响分析[J].南方电网技术,2020,14(04):31-38.
ZHANG Ruoyu, CAO Meigen, MAO Yu, et al. Analysis of the influence of additional cable on the seismic response of UHVDC composite arrester[J]. China Southern Power Grid Technology, 2020,14(04): 31-38.
[18]杨文刚,王璋奇,朱伯文,等.特高压单柱拉线塔塔线体系风振响应时程分析[J].中国电机工程学报,2015,35(12):3182-3191.
Yang Wengang, Wang Zhangqi, Zhu Bowen, et al. Time history analysis of wind vibration response of UHV single-column cable-actuated tower line system[J]. Proceedings of the CSEE,2015,35(12):3182-3191.
[19]宋永生,王际帅,宣卫红,等.带自复位功能的耗能减震阻尼器研究进展[J].金陵科技学院学报,2019,35(01):40-46.
Song Yongsheng, Wang Jishuai, Xuan Weihong, et al. Research Progress of Energy-Dissipating suspension cable dampers with Self-centering Function[J]. Journal of Jinling University of Science and Technology,2019,35(01):40-46.
[20]Duan, S., Wu, X., Zou, Y., & Jiang, L. Corrosion characterization of steel wires based on persistent homology theory for magnetostrictive guided wave testing signal[J]. Structural Health Monitoring. 2023;22(3):2147-2165.
[21]Duan, S., Wu, X., Wang, J., Zou, Y., Jiang, L., & Wei, Y. Defect Characterization Method for Bridge Cables Based on Topology of Dynamical Reconstruction of Magnetostrictive Guided Wave Testing Signals[J]. Journal of Nondestructive Evaluation, 2023, 42(2): 29.
[22]邢通.基于预压碟簧的自复位拉索支撑滞回性能研究[D].扬州大学,2020.
XING Tong. Study on hysteresis performance of self-centering cable support based on precompression disc spring[D]. Yangzhou University, 2020.
[23]池沛,董军,彭洋,等.一种新型自复位耗能拉索支撑的理论研究与数值分析[J].振动与冲击,2016,35(21):171-176+219.
CHI Pei, DONG Jun, PENG Yang, et al. Theoretical Research and Numerical Analysis of a Novel Self-centering Energy-Dissipating Cable Support[J]. Journal of Vibration and Shock,2016,35(21):171-176+219.
[24]贾慧娟,王际帅,郭彤,等.摩擦型自复位耗能拉索减震加固分析[J].金陵科技学院学报,2021,37(04):74-78.
Jia Huijuan, Wang Jishuai, Guo Tong, et al. Analysis of shock absorption and reinforcement of friction type self-centering energy-dissipating cable[J]. Journal of Jinling University of Science and Technology,2021,37(04):74-78.
[25]王际帅.摩擦耗能式自复位拉索的试验测试及减震性能分析研究[D].东南大学,2019.
WANG Jishuai. Experimental test and analysis of shock absorption performance of frictional energy-dissipating self-centering cable[D]. Southeast University, 2019.
[26]曹枚根,张若愚,朱云祥,等.输电线路铁塔面内预应力拉索抗风加固及设计参数影响研究[J].工业建筑,2022,52(08):48-56.
CAO Meigen, ZHANG Ruoyu, ZHU Yunxiang, et al. Study on Wind Resistance Reinforcement and Design Parameter Influence of Prestressed Cables in Transmission Line Towers[J]. Industrial Construction,2022,52(08):48-56.

[27]GB 50135-2019:高耸结构设计标准[S].北京:中国计划出版社,2019.

[28]刘晶波, 杜修力.结构动力学[M].北京:机械工业出版社,2005


PDF(4169 KB)

204

Accesses

0

Citation

Detail

段落导航
相关文章

/