弹性管束及其流致振动特性研究进展

彭德连1, 彭文海1, 2, 刘长利3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 54-61.

PDF(3019 KB)
PDF(3019 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 54-61.
振动理论与交叉研究

弹性管束及其流致振动特性研究进展

  • 彭德连1,彭文海*1,2,刘长利3
作者信息 +

Advance in study on elastic tube bundles and their flow induced vibration characteristics

  • PENG Delian1, PENG Wenhai*1,2, LIU Changli3
Author information +
文章历史 +

摘要

弹性管束(Elastic tube bundle)是一种新型的换热元件,利用流致振动(Flow-induced vibration)提高对流换热系数并减少管束结垢及其产生的热阻,实现复合强化传热效果,是一种节能高效的强化传热手段。其流致振动特征对换热效果和抗结垢能力有显著影响,因此,研究人员一直以振动特性为基础开展了大量研究,从数值仿真与实验方面研究振动的特征参数及其相关的影响因素。本文总结弹性管束换热元件发明以来二十余年的发展历程,分析讨论弹性管束元件振动特征相关研究,对弹性管束的研究与发展趋势作以展望,为后续研究与应用提供参考。

Abstract

Elastic tube bundle is a new type of heat exchange element that utilizes flow induced vibration to improve convective heat transfer coefficient and reduce tube bundle fouling and thermal resistance, achieving composite enhanced heat transfer effect. It is an energy-saving and efficient means of enhancing heat transfer. The flow induced vibration characteristics have a significant impact on heat transfer efficiency and anti-fouling ability. Therefore, researchers have been conducting extensive research based on vibration characteristics, studying the characteristic parameters of vibration and their related influencing factors from numerical simulation and experiments. This article summarizes the development process of elastic tube bundle heat exchange elements over the past 20 years, analyzes and discusses the related research on vibration characteristics of elastic tube bundle elements, and outlooks to the research and development trends of elastic tube bundles, providing reference for subsequent research and application. 

关键词

换热器 / 弹性管束 / 强化换热 / 流致振动

Key words

Heat exchanger / Elastic tube bundle / Heat transfer enhancement / Flow-induced vibration

引用本文

导出引用
彭德连1, 彭文海1, 2, 刘长利3. 弹性管束及其流致振动特性研究进展[J]. 振动与冲击, 2025, 44(3): 54-61
PENG Delian1, PENG Wenhai1, 2, LIU Changli3. Advance in study on elastic tube bundles and their flow induced vibration characteristics[J]. Journal of Vibration and Shock, 2025, 44(3): 54-61

参考文献

[1] Zhu X, Li Y, Zhu Q. Heat transfer enhancement technology for fins in phase change energy storage[J]. Journal of Energy Storage, 2022,55:105833.
 [2] Omidi M, Farhadi M, Jafari M. A comprehensive review on double pipe heat exchangers[J]. Applied Thermal Engineering, 2017,110:1075-1090.
 [3] Go J S, Kim S J, Lim G, et al. Heat transfer enhancement using flow-induced vibration of a microfin array[J]. Sensors and Actuators A: physical, 2001,90(3):232-239.
 [4] Shi J, Hu J, Schafer S R, et al. Numerical study of heat transfer enhancement of channel via vortex-induced vibration[J]. Applied thermal engineering, 2014,70(1):838-845.
 [5] Ali S, Menanteau S, Habchi C, et al. Heat transfer and mixing enhancement by using multiple freely oscillating flexible vortex generators[J]. Applied Thermal Engineering, 2016,105:276-289.
 [6] Sastre F, Velazquez A. Experimental study on heat transfer enhancement caused by the flow-induced vibration of a prism inside a channel[J]. Applied Thermal Engineering, 2017,125:412-424.
 [7] 程林, 田茂诚, 林颐清, 等. 弹性管束汽-水换热器强化传热试验研究[J]. 工程热物理学报, 2001(02):199-202.
CHENG L, TIAN M, LIN Y, et al. Experiment investigation of heat transfer enhancement in steam-water heat exchangers made up with elastic tube bundles [J].  Journal of Engineering Thermophysics, 2001, 22( 2) : 199-202.
 [8] Ji J, Pan Y, Zhang J, et al. Numerical study on the effect of baffle structure on the heat transfer performance of elastic tube bundle heat exchanger[J]. Applied Thermal Engineering, 2024,238:122220.
 [9] Ji J, Lu Y, Shi B, et al. Numerical research on vibration and heat transfer performance of a conical spiral elastic bundle heat exchanger with baffles[J]. Applied Thermal Engineering, 2023,232:121036.
[10] Su W, Tao K, Liu F. Numerical analysis of vibration response of elastic tube bundle of heat exchanger based on fluid structure coupling analysis[J]. Nonlinear Engineering, 2023,12(1):20220270.
[11] 季家东, 卢钰, 张经纬, 等. 折流板对锥形螺旋管束壳程传热性能的影响[J]. 振动与冲击, 2023,42(14):56-63.
Ji J, Lu Y, Zhang J, et al. Effect of baffles on the shell side heat transfer performance of a conical spiral tube bundle[J]. Journal of Vibration and Shock, 2023,42(14):56-63.
[12] 宿艳彩. 弹性管束流体诱导振动及换热特性研究[D]. 山东大学, 2012.
[13] Ji J, Ge P, Bi W. Numerical analysis on shell-side flow-induced vibration and heat transfer characteristics of elastic tube bundle in heat exchanger[J]. Applied Thermal Engineering, 2016,107:544-551.
[14] 姜波, 田茂诚, 郝卫东, 等. 新型弹性管束固有振动特性实验及数值模拟[J]. 山东大学学报(工学版), 2012,42(04):132-136.
Jiang B, Tian M, Hao W, et al. Experiment and numerical simulation on inherent vibration characteristics of the new elastic tube bundle[J]. Journal Of Shandong University (Engineering Science) 2012,42(04):132-136.
[15] Ji J, Gao R, Shi B, et al. Improved tube structure and segmental baffle to enhance heat transfer performance of elastic tube bundle heat exchanger[J]. Applied Thermal Engineering, 2022,200:117703.
[16] Ji J, Pan Y, Deng X, et al. Research on the heat transfer performance of an improved elastic tube bundle heat exchanger under fluid-induced vibration[J]. Case Studies in Thermal Engineering, 2023,49:103184.
[17] 王小燕, 季家东, 高润淼. 弹性管束结构改进及折流板对振动与传热性能的影响[J]. 热能动力工程, 2023,38(04):102-110.
Wang X, Ji J, Gao R. Influence of Elastic Tube Bundle Structure Improvement and Baffle Plate on Vibration and Heat Transfer Performance[J]. Journal of Engineering for Thermal Energy and Power, 2023,38(04):102-110.
[18] 张经纬, 季家东, 潘玉玲, 等. 折流板对改进型平面弹性管束换热器传热特性的影响[J]. 振动与冲击, 2023,42(10):51-57.
Zhang J, Ji J, Pan Y, et al. Effect of baffles on heat transfer characteristics of improved plane elastic tube bundle heat exchanger[J]. Journal of Vibration and Shock, 2023,42(10): 51-57. 
[19] Su Y, Li M, Liu M, et al. A study of the enhanced heat transfer of flow-induced vibration of a new type of heat transfer tube bundle—The planar bending elastic tube bundle[J]. Nuclear Engineering and Design, 2016,309:294-302.
[20] Yan K, Ge P, Bi W, et al. Vibration characteristics of fluid-structure interaction of conical spiral tube bundle[J]. Journal of Hydrodynamics, 2010,22(1):121-128.
[21] Ke Y, Ge P, Su Y, et al. Mathematical analysis of transverse vibration of conical spiral tube bundle with external fluid flow[J]. Journal of Hydrodynamics, Ser. B, 2010,22(6):816-822.
[22] Ji J, Gao R, Chen Q, et al. Analysis on Fluid-Induced Vibration and Heat Transfer of Helical Elastic Tube Bundles[J]. Journal of Thermophysics and Heat Transfer, 2021,35(1):171-178.
[23] 孙亚茹, 季家东, 华子森, 等. 带螺旋折流板的中空换热器振动和传热特性分析[J]. 振动与冲击, 2023,42(08):251-258.
Sun Y, Ji J, Hua Z, et al. Vibration and heat transfer performances analysis of a hollow helical baffle heat exchanger[J]. Journal of Vibration and Shock, 2023,42(08):251-258.
[24] Ji J, Zhang J, Gao R, et al. Numerical Research on Vibration-Enhanced Heat Transfer of Elastic Scroll Tube Bundle[J]. Journal of Thermophysics and Heat Transfer, 2022,36(1):61-68.
[25] 王之相. 基于双向流固耦合的熔盐蓄热过程特性研究[D]. 山东大学, 2020.
[26] 王守业. 新型弹性管束螺纹缠绕换热器特点及在深冷系统应用[J]. 机电信息, 2011(14):28-30.
         WANG Shouye.XXXXXXXXXXXXXXXXXX[J]. Mechanical and Electrical Information, 2011(14):28-30.
[27] Cheng L, Luan T, Du W, et al. Heat transfer enhancement by flow-induced vibration in heat exchangers[J]. International Journal of Heat and Mass Transfer, 2009,52(3-4):1053-1057.
[28] 程林, 田茂诚, 张冠敏, 等. 流体诱导振动复合强化传热的理论分析[J]. 工程热物理学报, 2002(03):330-332.
Cheng L, Tian M, Zhang G, et al. Theoretical analysis of complex heat transfer enhancement by flow-induced vibration [J].  Journal of Engineering Thermophysics, 2002(03):330-332.
[29] 程林, 田茂诚, 张冠敏, 等. 流体诱导振动复合强化传热的实验研究[J]. 工程热物理学报, 2002(04):485-487.
Cheng L, Tian M, Zhang G, et al. Experiments on complex heat transfer enhancement by flow-induced vibration [J].  Journal of Engineering Thermophysics, 2002(04):485-487.
[30] Yan K, Ge P, Zhai Q. A comprehensive comparison on vibration and heat transfer of two elastic heat transfer tube bundles[J]. Journal of Central South University, 2015,22(1):377-385.
[31] Ai S, Sun C, Liu Y, et al. Numerical Simulation of Flow‐Induced Vibration of Three‐Dimensional Elastic Heat Exchanger Tube Bundle Based on Fluid‐Structure Coupling[J]. Shock and Vibration, 2022,2022(1):8980562.
[32] 郑继周, 程林, 杜文静. 弹性管束动态特性子结构模态综合法[J]. 机械工程学报, 2007(07):202-206.
ZHENG Jizhou,  CHENG Lin,  DU Wenjing.  Dynamic characteristics of elastic tube bundles with component mode synthesis method[J]. Journal of Mechanical Engineering, 2007, 43( 7) : 202-206.
[33] Zheng J, Zhang Y. Principle and Application of Component Mode Synthesis Method[C]//2010 International Conference on Measuring Technology and Mechatronics Automation. Changsha:IEEE, 2010.
[34] 马永恒, 王宁, 邱涛, 等. 两类弹性传热管束管内流固耦合振动特性研究[J]. 石油矿场机械, 2014,43(10):88-91.
Ma Y, Wang N, Qiu T, et al. Comparison of Two Elastic Tube Bundles Vibration Characteristics with Tube Side Flow-Structure Interaction[J], Oil Field Equipment, 2014,43(10):88-91.
[35] 田茂诚, 林颐清, 程林, 等. 汽-水换热器内流体诱导振动强化传热试验[J]. 化工学报, 2001(03):257-261.
TIAN Maocheng,LIN Yiqing,CHENG Lin,et al.Experimental investigation of heat transfer enhancement by flow induced vibration in steam-water heat exchangers[J]. CIESC Journal, 2001(03):257-261.
[36] 田茂诚, 程林, 林颐清, 等. 管外水流诱导管束振动强化传热试验研究[J]. 工程热物理学报, 2002(01):63-66.
Tian M, Cheng L, Lin Y, et al. Experimental investigation of heat transfer enhancement by crossflow induced vibration [J].  Journal of Engineering Thermophysics, 2002(01):63-66.
[37] 郑继周. 弹性管束换热器各组件动态特性研究[D]. 山东大学, 2007.
[38] 董延颖. 管内流体诱导平面弹性管束振动及换热性能研究[D]. 山东大学, 2020.
[39] Ji J, Ge P, Bi W. Numerical analysis of shell-side flow-induced vibration of elastic tube bundle in heat exchanger[J]. Journal of Hydrodynamics, 2018,30:249-257.
[40] Duan D, Ge P, Bi W, et al. Vibration Response and Stress Analysis of Planar Elastic Tube Bundle Induced by Fluid Flow[J]. Chinese Journal of Mechanical Engineering, 2018,31:32.
[41] 陈卫强. 换热器内改进型平面弹性管束振动及传热特性分析[D]. 安徽理工大学, 2022.
[42] 季家东, 陈卫强, 邓旭, 等. 来流方向对弹性管束振动及传热特性的影响[J]. 振动与冲击, 2022,41(18):252-257.
Ji J, Chen W, Deng X, et al. Influence of the flow direction on the vibration and heat transfer characteristics of an elastic tube bundle [J]. Journal of Vibration and Shock, 2022,41(18):252-257.
[43] 俞逸杰, 宋继伟, 柴小明, 等. 弹性管束湿模态频率变化对传热特性影响分析[J]. 振动与冲击, 2019,38(23):265-270.
Yu Y, Song J, Chai X, et al. Effects of elastic tube bundle’s wet modal frequency variation on its heat transfer characteristics [J]. Journal of Vibration and Shock, 2019,38(23):265-270.
[44] 俞逸杰. 低流速下盘管振动对管外对流换热影响的研究[D]. 山东大学, 2019.
[45] 董延颖, 葛培琪, 王德京. 管内流体诱导平面弹性管束振动试验研究[J]. 自动化仪表, 2019,40(12):51-54.
Dong Y, Ge P, Wang D. Experimental Study on In-Pipe Flow- Induced Vibration of Planar Elastic Tube Bundle [J]. Process Automation Instrumentation, 2019,40(12):51-54.
[46] 蔡莉莉. 脉动流诱导单排弹性管束振动及换热研究[D]. 山东大学, 2015.
[47] 闫柯. 换热器内锥螺旋弹性管束振动与传热特性研究[D]. 山东大学, 2012.
[48] 闫柯, 葛培琪, 宿艳彩. 基于复模态的空间锥螺旋管管内流固耦合振动特性的有限元分析[J]. 振动与冲击, 2011,30(01):204-207.
Yan K, Ge P, Su Y. FEM analysis for fluid-structure interaction in a dimensional helical tube base on complex mode theory 2011,30(01):204-207.
[49] 王安民, 葛培琪, 段德荣. 管内流体诱导锥螺旋弹性管束振动分析[J]. 自动化仪表, 2017,38(05):11-14.
Wang A, Ge P, Duan D. Analysis of the In - Pipe Fluid Induced Vibration of Conical Spiral Elastic Tube Bundle Fluid Induced [J]. Process Automation Instrumentation, 2017,38(05): 11-14.
[50] 王安民, 葛培琪, 季家东, 等. 管程流体诱导锥螺旋管束振动的实验研究[J]. 节能技术, 2017,35(05):411-415.
Wang A, Ge P, Ji J, et al. Experiment of Tube Side Flow - induced Vibration Responses in Conical Spiral Tube Bundle[J]. Energy Conservation Technology, 2017,35(05): 411-415.
[51] 刘保银. 换热器内锥螺旋弹性管束振动及传热特性分析[D]. 安徽理工大学, 2022.

PDF(3019 KB)

179

Accesses

0

Citation

Detail

段落导航
相关文章

/