电磁轴承—转子系统的跳跃现象及机理分析

彭晓为1, 张晓申2, 3, 孙喆3, 赵雷3, 时振刚3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 62-70.

PDF(2758 KB)
PDF(2758 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 62-70.
振动理论与交叉研究

电磁轴承—转子系统的跳跃现象及机理分析

  • 彭晓为1,张晓申*2,3,孙喆3,赵雷3,时振刚3
作者信息 +

Jump phenomenon and mechanism analysis of electromagnetic bearing-rotor system

  • PENG Xiaowei1, ZHANG Xiaoshen*2,3, SUN Zhe3, ZHAO Lei3, SHI Zhen’gang3
Author information +
文章历史 +

摘要

针对电磁轴承—转子系统过临界模态时的跳跃现象,应用多尺度法分析其行为特性,并基于能量平衡关系阐释其发生的物理机理,进而提出抑制跳跃现象的有效措施。研究结果表明:电磁力非线性导致的特定转速范围内的多解共存是跳跃现象的根源;多个平衡解分布在低于线性化模型模态频率的转速范围,导致系统在运行中表现出软弹簧特性;在不稳定平衡解附近,能量与振动幅度和相位之间构成正反馈关系,系统在扰动作用下,电磁力与不平衡激励将驱使系统进一步远离平衡解,这是系统发生跳跃现象的根本物理原因;基于机理的参数讨论,合理的转子偏心距与控制器比例增益、微分增益均对跳跃现象有抑制作用。

Abstract

Focusing on the jump phenomenon occurred when magnetic bearing-rotor system surpassed the critical modal state, multiple-scale method was utilized to analyze the behavioral characteristics. Based on energy balance relationship, the physical mechanism of jump phenomenon was revealed and effective inhibition measures were proposed. The results show that multiple solutions coexistence in a specific speed range caused by nonlinear electromagnetic force is the root cause of jump phenomenon. And multiple equilibrium solutions distributed in the speed range below the modal frequency of linearized model, causes soft spring characteristics during operation. Near the unstable equilibrium solution, there exists positive feedback relationship between energy and vibration amplitude/phase. Under the disturbance, electromagnetic force and unbalanced excitation drive the system further away from the equilibrium solution, which is the fundamental physical reason for jump phenomenon. Through parameter discussion, reasonable eccentricity of the rotor and proportional/differential gain of the controller can inhibit jump phenomenon.

关键词

电磁轴承 / 跳跃现象 / 多尺度法 / 机理分析

Key words

active magnetic bearing / jump phenomenon / multi-scale method / mechanism analysis

引用本文

导出引用
彭晓为1, 张晓申2, 3, 孙喆3, 赵雷3, 时振刚3. 电磁轴承—转子系统的跳跃现象及机理分析[J]. 振动与冲击, 2025, 44(3): 62-70
PENG Xiaowei1, ZHANG Xiaoshen2, 3, SUN Zhe3, ZHAO Lei3, SHI Zhen’gang3. Jump phenomenon and mechanism analysis of electromagnetic bearing-rotor system[J]. Journal of Vibration and Shock, 2025, 44(3): 62-70

参考文献

[1] XU B, ZHOU J, XU L. Vibration suppression for a slice rotor supported by active magnetic bearings based on fractional-order adaptive backstepping control [J]. Mechanical Systems and Signal Processing, 2024, 210: 111160. 
[2] SCHWEITZER G, MALSEN E H. Magnetic bearings: Theory, design and application to rotating machinery [M]. Berlin: Springer Verlag, 2009.
[3] SAEED N A, KANDIL A. Lateral vibration control and stabilization of the quasiperiodic oscillations for rotor-active magnetic bearings system [J]. Nonlinear Dynamics, 2019, 98(2): 1191-218.
[4] 高朋, 侯磊, 陈予恕. 双转子-中介轴承系统非线性振动特性 [J]. 振动与冲击, 2019, 38(15): 1-10.
GAO Peng, HOU Lei, CHEN Yushu. Nonlinear vibration characteristics of a dual-rotor system with inter-shaft bearing [J]. Journal of Vibration and Shock, 2019, 38(15): 1-10.
[5] 仝宇, 田中梁, 乔朝阳, 等. 基于改进自适应陷波器的电磁轴承支承转子自动平衡控制 [J]. 振动与冲击, 2023, 42(08): 51-61+78.
TONG Yu, TIAN Zhongliang, QIAO Zhaoyang, et al. Automatic balance control of a rotor supported by magnetic bearings based on an improved adaptive notch filter [J]. Journal of Vibration and Shock, 2023, 42(08): 51-61+78.
[6] SAEED N A, MAHROUS E, AWREJCEWICZ J. Nonlinear dynamics of the six-pole rotor-AMB system under two different control configurations [J]. Nonlinear Dynamics, 2020, 101(4): 2299-323.
[7] KANG K, PALAZZOLO A. Homopolar magnetic bearing saturation effects on rotating machinery vibration [J]. IEEE Transactions on Magnetics, 2012: 48(6):1984-94.
[8] SAEED N A, EISSA M, EL-GANINI W A. Nonlinear oscillations of rotor active magnetic bearings system [J]. Nonlinear Dynamics, 2013: 74(1-2): 1-20.
[9] 徐璐, 饶晓波, 褚衍东. 磁悬浮转子-轴承碰摩系统的非线性动力学行为 [J]. 机械强度, 2020, 42(01): 7-14.
XU Lu, RAO Xiaobo, CHU Yandong. Nonlinear dynamics of the magnetic rotor bearing system with rub-impact force [J]. Journal of Mechanical Strength, 2020, 42(01): 7-14.
[10] 陈予恕. 非线性振动 [M]. 天津: 天津科学技术出版社, 1983.
[11] NAYFEH A H, MOOK D T. Nonlinear oscillations [M]. New York: Wiley, 1979.
[12] FIDLIN A. Nonlinear oscillations in mechanical engineering [M]. Berlin: Springer Heidelberg, 2006.
[13] 王磊佳, 张鹄志, 胡辉, 等. 一种改进的KBM法求解非线性振动方程 [J]. 振动与冲击, 2018, 37(13): 165-70.
WANG Leijia, ZHANG Huzhi, HU Hui, et al. An improved KBM method for solving nonlinear vibration equations [J]. Journal of Vibration and Shock, 2018, 37(13): 165-70.
[14] WANG H L, HU H Y. Bifurcation analysis of a delayed dynamic system via method of multiple scales and shooting technique [J]. International Journal of Bifurcation and Chaos, 2005: 15(02): 425-50.
[15] HAMDI M, BELHAG M. Self-excited vibration control for axially fast excited beam by a time delay state feedback [J]. Chaos, Solitons and Fractals, 2009: 41(2): 521-32.
[16] DWIVEDY S K, KAR R C. Nonlinear response of a parametrically excited system using higher-order method of multiple scales [J]. Nonlinear Dynamics, 1999: 20(2): 115-30.
[17] HU H, DOWELL E H, VIRGIN L N. Resonances of a harmonically forced duffing oscillator with time delay state feedback [J]. Nonlinear Dynamics, 1998: 15(4): 311-27.
[18] 张国荣, 张鹏飞, 王志恒, 等. 基于PD控制的电磁轴承-转子系统非线性振动研究 [J]. 振动与冲击, 2022, 41(10): 99-105.
ZHANG Guorong, ZHANG Pengfei, WANG Zhiheng, et al. Nonlinear vibration of a magnetic bearing-rotor system based on PD control [J]. Journal of Vibration and Shock, 2022, 41(10): 99-105.
[19] 张国荣, 王希奎, 邹瀚森, 等. 转子-电磁轴承非线性系统时滞减振研究 [J]. 动力学与控制学报, 2023, 21(08): 99-109.
ZHAGN Guorong, WANG Xikui, ZHOU Hansen, et al. Vibration suppression of time delay in rotor-magnetic bearing nonlinear system [J]. Journal of Dynamics and Control, 2023, 21(08): 99-109.
[20] 胡海岩. 应用非线性动力学 [M]. 北京: 航空工业出版社, 2000.
[21] XIAOSHEN Z, TIANPENG F, ZHE S, et al. Nonlinear Analysis of Rotor-AMB System with Current Saturation Effect [J]. The Applied Computational Electromagnetics Society Journal (ACES), 2019, 34(04): 557-66.
[22] ZHANG W, WU R Q, SIRIGULENG B. Nonlinear Vibrations of a Rotor-Active Magnetic Bearing System with 16-Pole Legs and Two Degrees of Freedom [J]. Shock and Vibration, 2020, 2020: 5282904.
[23] 钟志贤. 主动电磁轴承—裂纹柔性转子系统动力学特性研究 [D]. 杭州: 浙江大学, 2013.
ZHONG Zhixian. Research on dynamic characteristics of cracked flexible rotor-active magnetic bearing systems [D]. Hangzhou: Zhejiang University, 2013.

PDF(2758 KB)

Accesses

Citation

Detail

段落导航
相关文章

/