考虑气膜流动分布的止推气体轴承端面槽型优化研究

雷彤 1, 2, 刘东 1, 2, 徐晨曦 1, 2, 彭楠 3, 4, 杨魏 1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 71-80.

PDF(4520 KB)
PDF(4520 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 71-80.
振动理论与交叉研究

考虑气膜流动分布的止推气体轴承端面槽型优化研究

  • 雷彤 1,2 ,刘东 1,2,徐晨曦 1,2,彭楠 3,4,杨魏*1,2
作者信息 +

Optimization of end face groove shape for thrust gas bearing considering gas film flow distribution

  • LEI Tong1,2, LIU Dong1,2, XU Chenxi1,2, PENG Nan3,4, YANG Wei*1,2
Author information +
文章历史 +

摘要

针对传统槽型结构参数研究体系对螺旋槽型止推气体轴承的承载性能提升的局限性,基于气膜流动分布研究建立了优化端面槽型形状的新参数体系。通过螺旋角控制的端面槽型形状差异性分析,提出了优化槽区入流方向的来流夹角这一关键槽型参数,并分析了不同来流夹角下的气膜流场;在此基础上,建立了包含来流夹角、入流角、出流角、入流半径与出流半径的端面槽型参数体系,通过参数寻优得到最优端面槽型形状;最后对比了优化槽型与传统结构参数槽型的承载性能与流场的差异,验证了本文所建立的参数体系可进一步提升止推气体轴承的承载性能,拓宽止推气体轴承的槽型优化空间。

Abstract

Aiming at the limitations of the traditional groove structure parameter research system to improve the load carrying performance of spiral groove thrust gas bearings, a new parameter system to optimize the groove shape of the end face is established based on the analysis of the internal flow distribution of the gas film. By analyzing the difference of the end face groove shape controlled by the helix angle, the key groove parameter of the incoming flow angle for optimizing the inlet flow pattern in the groove area is proposed, and the flow field of the gas film under different incoming flow angles is analyzed; on this basis, a parameter system of the end face groove shape containing the incoming flow angle, inlet flow angle, outflow angle, inlet radius and outflow radius is set up, and the end face groove shape with the optimum groove area in the inlet flow pattern is obtained by searching for the optimum for the parameter system; finally, the optimized groove shape is compared with the optimized groove structure parameter research system to improve the load carrying performance of the thrust bearing. Finally, the differences in load carrying performance and flow field between the optimized groove and the traditional structural parameter groove are compared, and it is verified that the parameter system established in this paper can further improve the load carrying performance of thrust gas bearings, and widen the space of groove optimization for thrust gas bearings.

关键词

螺旋槽 / 端面槽型结构 / 流动分析 / 槽型优化参数体系

Key words

spiral groove / end face groove optimization / flow analysis / parameter system of groove optimization

引用本文

导出引用
雷彤 1, 2, 刘东 1, 2, 徐晨曦 1, 2, 彭楠 3, 4, 杨魏 1, 2. 考虑气膜流动分布的止推气体轴承端面槽型优化研究[J]. 振动与冲击, 2025, 44(3): 71-80
LEI Tong1, 2, LIU Dong1, 2, XU Chenxi1, 2, PENG Nan3, 4, YANG Wei1, 2. Optimization of end face groove shape for thrust gas bearing considering gas film flow distribution[J]. Journal of Vibration and Shock, 2025, 44(3): 71-80

参考文献

[1] Powell J. A review of progress in gas lubrication[J]. Review of Physics in Technology, 1970, 1(2): 96.
[2] 韩东江, 郝龙, 毕春晓, 等. 燃气轮机转子系统典型振动特性试验研究[J]. 振动与冲击, 2021, 40(04): 87-93.
HANG Dongjiang, HAO Long, BI Chunxiao, et al. An experimental study on typical vibration characteristics of a gas turbine rotor system [J]. Journal of Vibration and Shock, 2021, 40(04): 87-93.
[3] 李冰, 周德俭, 徐武彬, 等. 表面波纹度对滑动轴承转子系统稳定性的影响[J]. 机械工程学报, 2019, 55(19): 51-59.
LI Bing, ZHOU Dejian, XU Wubing, et al. Effect of surface waviness on stability of hydrodynamic journal bearing systems[J]. Journal of Mechanical Engineering, 2019, 55(19): 51-59.
[4] LIU X Y, WANG J S. Influence of groove molded lines on the lubrication performance of water-lubricated spiral groove thrust bearings[J]. Advanced Materials Research, 2013, 694: 538-42.
[5] LIU Z, LIU Y, LIU X. Optimization design of main parameters for double spiral grooves face seal[J]. Science in China Series E: Technological Sciences, 2007, 50: 448-53.
[6] Schiffmann J, Favrat D. Integrated design and optimization of gas bearing supported rotors[J].Journal Of Mechanical Design,2010.
[7] Zirkelback N. Parametric study of spiral groove gas face seals [J]. Tribology Transactions, 2000, 43(2): 337-43.
[8] Whipple T P. The inclined groove bearing[R]. United Kingdom Atomic Energy Authority. Research Group. Atomic Energy Research Establishment, Harwell, Berks, England, 1958.
[9] Brunetiere N. A general model for liquid and gas lubrication, including cavitation[J]. Journal of Tribology, 2018, 140(2): 021702.
[10] Fesanghary M, Khonsari M. On the optimum groove shapes for load-carrying capacity enhancement in parallel flat surface bearings: theory and experiment [J]. Tribology International, 2013, 67: 254-62.
[11] Andres L S. Hydrodynamic fluid film bearings and their effect on the stability of rotating machinery[J]. Design and Analysis of High Speed Pumps; Research & Technology Organisation (RTO): Neuilly, France, 2006.
[12] Isomura K, Togo S, Tanaka S. Study of micro-high speed bearings and rotor dynamics for micromachine gas turbines[J]. Micro Gas Turbines, Educational Notes, France, 2005.
[13] Thatte A, Zheng X. Hydrodynamics and sonic flow transition in dry gas seals[C]//ASME Turbo Expo 2014: Turbine Technical Conference and Exposition.Düsseldorf, Germany:American Society of Mechanical Engineers,2014.
[14] Fairuz Z M, Jahn I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals[J]. Tribology International, 2016, 102: 333-347.
[15] Heshun W, Weibing Z, Qiang W, et al. Numerical simulation on flow field of spiral grooved dry gas seals[C]// 2010 International Conference On Computer Design and Applications. IEEE, 2010, 5: V5-227-V5-230.
[16] Jing X, Xudong P, Shaoxian B, et al. CFD simulation of microscale flow field in spiral groove dry gas seal[C]// Proceedings of 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications. IEEE, 2012: 211-217.
[17] Shahin I, Gadala M, Alqaradawi M, et al. Centrifugal compressor spiral dry gas seal simulation working at reverse rotation [J]. Procedia Engineering, 2013, 68: 285-92.
[18] Stanev P, Wardle F, Corbett J. Investigation of grooved hybrid air bearing performance [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2004, 218(2): 95-106.
[19] Yemelyanov A, Yemelyanov I. Physical models, theory and fundamental improvement to self-acting spiral-grooved gas bearings and visco-seals [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1999, 213(4): 263-73.
[20] Yue Y, Stolarski T. Numerical prediction of the performance of gas-lubricated spiral groove thrust bearings [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1997, 211(2): 117-28.
[21] Hashimoto H, Ochiai M. Theoretical analysis and optimum design of high speed gas film thrust bearings (static and dynamic characteristic analysis with experimental verifications) [J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2007, 1(1): 102-12.
[22] Liu X Y, Wang J S. Influence of groove molded lines on the lubrication performance of water-lubricated spiral groove thrust bearings[J]. Advanced Materials Research, 2013, 694: 538-542.
[23] 胡丹梅, 吴宗祥. 直线槽端面气体密封分析计算[J]. 流体机械, 1996, 24(9): 16-22.
Hu Danmei, Wu Zongxiang. Performance analysis of oblique groove gas face seal[J]. Fluid Machinery, 1996, 24(9): 16–22
[24] Chen Y, Jiang J, Peng X D. Dynamic characteristics and transient sealing performance analysis of hyperelliptic curve groove dry gas seals [J].  Tribology International,2017, 116: 217-28.
[25] 彭旭东, 刘坤, 白少先, 等. 典型螺旋槽端面干式气体密封动压开启性能[J]. 化工学报, 2013, 64(1): 326-333.
Peng Xudong, Liu Kun, Bai Shaoxian, et al. Dynamic opening characteristics of dry gas seals with typical types of spiral grooves[J]. CIESC Journal, 2013, 64(1): 326–333
[26] 彭旭东, 呼延晨龙, 李纪云, 等. 基于鸟翼轮廓的干式气体密封仿生型槽设计 [J]. 摩擦学学报, 2012, 32(6): 563-569.
Peng Xudong, Huyan C L, Li Jiyun, et al. Design of a biomorphic groove dry gas seal based on bird wing outlines[J]. Tribology, 2012, 32(6): 563–569
[27] Jiang J, Peng X, LI J, et al. A comparative study on the performance of typical types of bionic groove dry gas seal based on bird wing [J]. Journal of Bionic Engineering,2016, 13(2): 324-34.
[28]李云龙, 董志强. 不同构型的螺旋槽底动压气体止推轴承性能的比较分析研究[J]. 振动与冲击, 2022, 41(19): 172-178.
LI Yunlong, DONG Zhiqiang. Contrastive analysis for performances of dynamic pressure gas thrust bearings with different configurations of spiral groove bottom [J]. Journal of vibration and shock, 2022, 41(19): 172-178.
[29] 丁雪兴, 陆俊杰, 张伟政, 等. 上游泵送机械密封两种优化槽形及性能的对比[J]. 兰州理工大学学报, 2015, 41(6): 74-78.
DING Xuexing, LU Junjie, ZHANG Weizheng, et al. Comparison between two optimized groove configurations and their performance for upstream pumping mechanical seal [J]. Journal of Lanzhou University of Techology, 2015, 41(6): 74-78.
[30] 徐奇超, 江锦波, 陈源, 等. 经典曲线型槽干气密封稳动态密封特性数值分析[J]. 摩擦学学报, 2018, 38(5): 584-594.
Xu Q C, Jiang J B, Chen Y, et al. Numerical analysis of steady-state and dynamic characteristics of typical molded line groove dry gas seals[J]. Tribology, 2018, 38(5): 584-594.
[31] Hashimoto H, Namba T. Optimization of groove geometry for a thrust air bearing according to various objective functions[J]. Journal of Tribology, 2009, 131(4): 1-10.
[32] Shen C, Khonsari M M. Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding[J]. Tribology International, 2015, 82: 1-11.
[33] 彭旭东, 黄莉, 白少先, 等. 雁型槽干式气体端面密封性能的数值分析[J]. 化工学报, 2010, 61(12): 3193-3199.
Peng X D, Huang L, Bai S X, et al. Numerical analysis of sealing performance of dry gas seal with goose-grooves[J]. CIESC Journal, 2010, 61(12): 3193-3199.
[34] 王福军. 计算流体动力学分析: CFD 软件原理与应用 [M]. 北京: 清华大学出版社有限公司, 2004.
WANG Fujun. Computational fluid dynamics analysis: principles and applications of CFD software [M]. Beijing: Tsinghua University Press, 2004.
[35] 王建磊, 门川皓, 赵伟刚, 等. 动静压机械密封的结构设计及端面槽型优化研究[J]. 机械工程学报, 2021, 57(9): 108-117.
WANG Jianlei, MEN Chanhao, ZHAO Weigang, et al. Research on structural design and end face slot of optimization of hydrodynamic and hydrostatic mechanical Seal [J]. Journal of Mechanical Engineering, 2021, 57(09): 108-17. 

PDF(4520 KB)

130

Accesses

0

Citation

Detail

段落导航
相关文章

/