线性剪切流下钢悬链式立管涡激振动响应研究

马博文1, 2, 常杏1, 2, 陈伟民1, 唐文勇2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 81-90.

PDF(3522 KB)
PDF(3522 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 81-90.
振动理论与交叉研究

线性剪切流下钢悬链式立管涡激振动响应研究

  • 马博文*1,2,常杏1,2,陈伟民1,唐文勇2
作者信息 +

Vortex induced vibration response of steel catenary riser under linear shear flow

  • MA Bowen*1,2, CHANG Xing1,2, CHEN Weimin1, TANG Wenyong2
Author information +
文章历史 +

摘要

基于空间分布的尾流振子模型对细长柔性悬链线立管三维涡激振动响应特性进行数值仿真研究。数值模型考虑了立管局部倾角和流固场相对速度对水动力载荷的影响,将尾流振子与立管运动控制方程耦合,构建了悬链线立管非平面来流下的时域动力学模型,采用二阶精度有限差分法和四阶龙格库塔法求解耦合振动方程。通过将模拟结果与实验结果对比,模型的可靠性得到了一定程度上的验证;随后针对实尺度立管,比较了不同剪切度来流对立管涡激振动幅值、响应传播波形、结构振动频率、锁定区间及流固场能量传递系数的影响。数值结果表明:相比于均匀流,线性剪切流下的立管呈现更复杂的振动响应特性,随着来流剪切度升高,振动幅值逐渐减小,锁定区沿管轴方向呈现区域化特性并伴随显著的多频振动响应。

Abstract

A numerical prediction model is developed to investigate three-dimensional vortex-induced vibration of a long flexible catenary riser. By considering uniform and sheared flows perpendicular to the initial curvature plane of the catenary riser, spatially distributed nonlinear wake oscillators are coupled with equations of catenary riser responses to simulate the fluctuating hydrodynamic lift and drag forces that account for effects of local riser inclinations and relative flow-cylinder velocities. To solve the fluid-structure interaction model, a hybrid scheme of a central finite difference method combined with a fourth-order Runge-Kutta method is utilized. Simulations are performed based on a flexible curved cylinder under a uniform flow and validated against numerical and experimental results in the literature. For a long flexible catenary riser, effects of flow profiles are analyzed by comparing a uniform free stream flow versus linearly sheared flows at various shear parameters in terms of amplitudes, wave patterns, resonant frequencies, lock-in conditions, and energy transfer mechanisms. The overall results highlight the influence of shear parameters on VIV responses. An increased shear parameter leads to lessened response amplitudes but enhanced space-varying lock-in conditions and multi-frequency VIV responses.

关键词

悬链线立管 / 涡激振动 / 尾流振子 / 剪切流

Key words

catenary riser / vortex-induced vibration / wake oscillator / sheared flow

引用本文

导出引用
马博文1, 2, 常杏1, 2, 陈伟民1, 唐文勇2. 线性剪切流下钢悬链式立管涡激振动响应研究[J]. 振动与冲击, 2025, 44(3): 81-90
MA Bowen1, 2, CHANG Xing1, 2, CHEN Weimin1, TANG Wenyong2. Vortex induced vibration response of steel catenary riser under linear shear flow[J]. Journal of Vibration and Shock, 2025, 44(3): 81-90

参考文献

[1] Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations [J], Journal of fluids and structures, 2004, 19(4): 389-447.
[2] Wu X, Ge F, Hong Y. A review of recent studies on vortex-induced vibrations of long slender cylinders [J], Journal of Fluids and structures, 2012, 28: 292-308.
[3] Hartlen R T, Currie I G. Lift-oscillator model of vortex-induced vibration [J], Journal of the Engineering Mechanics Division, 1970, 96(5): 577-591.
[4] Facchinetti M L, De Langre E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations [J], Journal of Fluids and structures, 2004, 19(2): 123-140.
[5] Bai X, Qin W. Using vortex strength wake oscillator in modelling of vortex induced vibrations in two degrees of freedom [J], European Journal of Mechanics-B/Fluids, 2014, 48: 165-173.
[6] Le Cunff C, Biolley F, Fontaine E, Étienne S, Facchinetti M L. Vortex-induced vibrations of risers: theoretical, numerical and experimental investigation [J], Oil & Gas Science and Technology, 2002, 57(1): 59-69.
[7] Mathelin L, De Langre E. Vortex-induced vibrations and waves under shear flow with a wake oscillator model [J], European Journal of Mechanics-B/Fluids, 2005, 24(4): 478-490.
[8] Violette R, De Langre E, Szydlowski J. Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments [J], Computers & structures, 2007, 85(11-14): 1134-1141.
[9] 陈伟民, 张立武, 李敏. 采用改进尾流振子模型的柔性海洋立管的涡激振动响应分析 [J], 工程力学, 2010, 27(5): 240-246.
Chen Weimin, Zhang Liwu, Li Min. Prediction of vortex-induced vibration of flexible riser using improved wake-oscillator model [J], Engineering Mechanics, 2010, 27(5): 240-246.
[10] Nowlin Jr W, Reid R, DiMarco S, Howard M, Jochens A. Published, Overview of Classes of Currents in the deep water region of the Gulf of Mexico, [C]// Offshore Technology Conference, 2001.
[11] 付雪鹏, 付世晓, 张萌萌, 许玉旺, 任浩杰, 孙童晓. 双向剪切流作用下柔性立管平均阻力特性研究 (网络首发) [EB/OL].(2023-06-09)[2024-05-20]https://doi.org/10.16183/j.cnki.jsjtu.2023.124.
[12] Srinil N. Analysis and prediction of vortex-induced vibrations of variable-tension vertical risers in linearly sheared currents [J], Applied Ocean Research, 2011, 33(1): 41-53.
[13] Gao Y, Pan G, Meng S, Liu L, Jiang Z, Zhang Z. Time-domain prediction of the coupled cross-flow and in-line vortex-induced vibrations of a flexible cylinder using a wake oscillator model [J], Ocean Engineering, 2021, 237: 109631.
[14] 邹丽, 国奇, 金国庆, 于宗冰. 基于尾流振子模型的柔性悬挂立管涡激振动分析 [J], 东南大学学报(自然科学版), 2024, (001): 054.
Zou Li, Guo Qi, Jin Qingguo, Yu Zongbing. Vortex-induced vibration analysis of flexible suspended riser based on wake oscillator model [J], Journal of Southeast University, 2024, (001): 054.
[15] Bourguet R, Karniadakis G E, Triantafyllou M S. Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow [J], Journal of Fluid Mechanics, 2013, 717: 361-375.
[16] Lucor D, Mukundan H, Triantafyllou M. Riser modal identification in CFD and full-scale experiments [J], Journal of Fluids and Structures, 2006, 22(6-7): 905-917.
[17] 及春宁, 花阳, 许栋, 邢国源, 陈威霖. 不同剪切率来流作用下柔性圆柱涡激振动数值模拟 [J], 力学学报, 2018, 50(01): 21-31.
Ji Chunning, Hua Yang, Xu Dong, Xing Guoyuan, Chen Weilin, Numerical simulation of vortex-induced vibration of a flexible cylinder exposed to shear flow at different shear rates [J], Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(01): 21-31.
[18] Vandiver J K, Allen D, Li L. The occurrence of lock-in under highly sheared conditions [J], Journal of Fluids and Structures, 1996, 10(5): 555-561.
[19] 高云, 付世晓, 熊友明, 杨家栋, 王盟浩. 剪切来流下柔性圆柱体涡激振动响应试验研究 [J], 振动与冲击, 2016, 35(20): 7.
Gao Yun, Fu Shixiao, Xiong Youming, Yang Jiadong, Wang Menghao. Experimental study on vortex induced vibration responses of a flexible cylinder in sheared current [J], Journal of Vibration and Shock,2016, 35(20): 7.
[20] Tognarelli M, Slocum S, Frank W, Campbell R. Published, VIV response of a long flexible cylinder in uniform and linearly sheared currents, [C]// Offshore technology conference, 2004.
[21] Li X, Chen D, Gu H, Bai F. Three-dimensional vortex-induced vibration analysis of catenary-type risers under flow with different incident angles [J], Ocean Engineering, 2021, 240: 109978.
[22] Zhu H, Lin P, Yao J. An experimental investigation of vortex-induced vibration of a curved flexible pipe in shear flows [J], Ocean Engineering, 2016, 121: 62-75.
[23] Zhu H, Lin P, Gao Y. Vortex-induced vibration and mode transition of a curved flexible free-hanging cylinder in exponential shear flows [J], Journal of Fluids and Structures, 2019, 84: 56-76.
[24] Ma B, Srinil N. Prediction model for multidirectional vortex-induced vibrations of catenary riser in convex/concave and perpendicular flows [J], Journal of Fluids and Structures, 2023, 117: 103826.
[25] Kumar R P, Nallayarasu S. VIV response of risers with large aspect ratio and low rigidity using a numerical scheme based on wake oscillator model [J], Applied Ocean Research, 2022, 118: 103011.
[26] Gopalkrishnan R, 1993, "Vortex-induced forces on oscillating bluff cylinders," Massachusetts Institute of Technology.
[27] 袁昱超, 薛鸿祥, 唐文勇. 计及附加质量系数变化效应的立管涡激振动时域响应研究 [J], 振动与冲击, 2018, 37(1): 53-59.
Yuan Yuchao, Xue Hongxiang, Tang Wenyong. Time domain vortex-induced vibration responses of a riser in consideration of the variation effect of added mass coefficient. Journal of Vibration and Shock, 2018, 37(1): 53-59.
[28] Ma B, Srinil N. Published, Numerical Prediction of 3-D Vortex-Induced Vibration of Catenary Riser In Planar and Non-Planar Flows, [C]// International Conference on Offshore Mechanics and Arctic Engineering, 2021.
[29]aSrinil N, Zanganeh H. Modelling of coupled cross-flow/in-line vortex-induced vibrations using double Duffing and van der Pol oscillators [J], Ocean Engineering, 2012, 53: 83-97.
[30] Srinil N, Opinel P-A, Tagliaferri F. Empirical sensitivity of two-dimensional nonlinear wake–cylinder oscillators in cross-flow/in-line vortex-induced vibrations [J], Journal of Fluids and Structures, 2018, 83: 310-338.
[31] 高云, 潘港辉, 刘磊, 柴盛林. 变张力细长柔性立管涡激振动响应特性数值研究 [J], 船舶力学, 2023, 27(9): 1398-1412.
GAO Yun,PAN Ganghui,LIU Lei,et al.Numerical study on responses of vortex-induced vibration of a long flexible riser with an axial time-varying tension[J].Journal of Ship Mechanics, 2023, 27(9): 1398-1412.
[32] Kuiper G, Brugmans J, Metrikine A. Destabilization of deep-water risers by a heaving platform [J], Journal of sound and vibration, 2008, 310(3): 541-557.
[33] Cabrera-Miranda J M, Paik J K. Two-phase flow induced vibrations in a marine riser conveying a fluid with rectangular pulse train mass [J], Ocean Engineering, 2019, 174: 71-83.
[34] Ma B, Srinil N. Planar dynamics of inclined curved flexible riser carrying slug liquid–gas flows [J], Journal of Fluids and Structures, 2020, 94: 102911.
[35] Fredsoe J, Sumer B M, 1997, Hydrodynamics around cylindrical structures, World Scientific.
[36] Kurushina V, Postnikov A, Franzini G R, Pavlovskaia E. Optimization of the wake oscillator for transversal VIV [J], Journal of Marine Science and Engineering, 2022, 10(2): 293.
[37] Gao X-f, Xie W-d, Xu W-h, Bai Y-c, Zhu H-t. A novel wake oscillator model for vortex-induced vibrations prediction of a cylinder considering the influence of Reynolds number [J], China Ocean Engineering, 2018, 32(2): 132-143.
[38] Moe G, Teigen T r, Simantiras P, Willis N, Lie H. Published, Predictions and model tests of an SCR undergoing VIV in flow at oblique angles, [C]// International Conference on Offshore Mechanics and Arctic Engineering, 2004.
[39] Bourguet R, Karniadakis G E, Triantafyllou M S. Vortex-induced vibrations of a long flexible cylinder in shear flow [J], Journal of fluid mechanics, 2011, 677: 342-382.

PDF(3522 KB)

142

Accesses

0

Citation

Detail

段落导航
相关文章

/