400km/h速度下轨道-桥梁振动响应与顶板裂缝深度影响

孟鑫1, 2, 高浩3, 刘鹏辉1, 2, 勾红叶3, 王一干1, 2, 杨宜谦1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 91-98.

PDF(2839 KB)
PDF(2839 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 91-98.
振动理论与交叉研究

400km/h速度下轨道-桥梁振动响应与顶板裂缝深度影响

  • 孟鑫1,2,高浩3,刘鹏辉*1,2,勾红叶3,王一干1,2,杨宜谦1,2
作者信息 +

Vibration response of track-bridge system and effects of crack depth at bridge top slab under a train speed of 400 km/h

  • MENG Xin1,2, GAO Hao3, LIU Penghui*1,2, GOU Hongye3, WANG Yigan1,2, YANG Yiqian1,2
Author information +
文章历史 +

摘要

为探究400km/h列车激励下高速铁路轨道-桥梁结构的振动响应,以某高铁桥梁为研究对象,在钢轨、桥梁、桥墩位置布置竖向加速度传感器,实测轨道-桥梁结构在多级速度作用下加速度的变化规律;在此基础上,借助于结构声强理论和车-轨-桥耦合振动仿真分析,从能量和加速度的角度掌握了顶板下缘裂缝深度的影响程度。研究结果表明:在高速列车激励下,实测钢轨、桥梁顶板和桥墩的加速度峰值分别为800m/s2、4m/s2和0.5m/s2;振动加速度数值从钢轨到桥墩层层递减,随着列车速度的增大各测点加速度峰值呈线性增加;裂缝的出现会增大桥梁顶板下缘的加速度峰值,改变振动能量的分布;当裂缝深度大于45mm时,顶板下缘加速度和振动能量值分别为无裂缝工况下的1.1倍和1.5倍,应注意加强对裂缝状态的观测。研究成果可以为车-轨-桥耦合分析提供依据,也可以为高速铁路简支箱梁顶板下缘开裂维修提供指导。

Abstract

In order to explore the vibration response of high-speed railway track-bridge system under 400 km/h running speed, taking a high-speed railway bridge as the research object, the vertical acceleration measuring points are arranged at the key positions of the bridge-track system and the pier. The variation of the acceleration of the bridge-track system under multi-stage speed is explored. On this basis, with the help of structural sound intensity and train-track-bridge coupling vibration analysis, the influence of crack depth of the lower edge of the top slab is proposed from the perspective of vibration energy and acceleration. The results show that the peak acceleration of the rail, bridge top slab and pier is 800 m/s2, 4 m/s2 and 0.5 m/s2 respectively under the excitation of multiple unit train. The acceleration decreases from the rail to pier, with the increase of running speed, the acceleration of each measuring point is also linear increasing. The cracks will increase the peak acceleration of the lower edge of the bridge top slab and change the distribution of vibration energy. When the crack depth is greater than 45 mm, the acceleration and vibration energy are 1.1 times and 1.5 times of those without cracks, respectively, attention should be paid to strengthening the observation of the crack state. The research results can provide a basis for the train-track-bridge coupling analysis, and can also provide a guidance for the cracking maintenance of the lower edge of the simply supported box girder top slab of high-speed railway.

关键词

轨道-桥梁响应 / 车-轨-桥耦合分析 / 结构声强 / 振动能量 / 裂缝

Key words

bridge-track response / train-track-bridge coupled analysis / structural sound intensity / vibration energy / crack

引用本文

导出引用
孟鑫1, 2, 高浩3, 刘鹏辉1, 2, 勾红叶3, 王一干1, 2, 杨宜谦1, 2. 400km/h速度下轨道-桥梁振动响应与顶板裂缝深度影响[J]. 振动与冲击, 2025, 44(3): 91-98
MENG Xin1, 2, GAO Hao3, LIU Penghui1, 2, GOU Hongye3, WANG Yigan1, 2, YANG Yiqian1, 2. Vibration response of track-bridge system and effects of crack depth at bridge top slab under a train speed of 400 km/h[J]. Journal of Vibration and Shock, 2025, 44(3): 91-98

参考文献

[1] 班新林, 苏永华, 石龙, 等. 时速400 km高速铁路简支梁桥建造技术[J]. 中国铁路, 2021(09): 118-123.
BAN Xinlin, SU Yonghua, SHI Long, et al. Construction Technologies of Simply-supported Bridge for 400 km/h High Speed Railway[J]. China Railway, 2021, 711(9): 118-123.
[2] 徐银光, 李艳. 成渝中线400km/h轮轨动车组技术指标研究[J]. 高速铁路技术, 2020, 11(3):7-11.
XU Yinguang, LI Yan. Research on Technical Indexes of 400 km/h Wheel-Rail EMU for Chengdu-Chongqing Middle Line[J]. High Speed Railway Technology, 2020, 11(3):7-11.
[3] 张可新, 徐宁, 白鑫. 国外400 km/h以上高速铁路综合试验研究[J]. 中国铁路, 2024(02): 20-30.
ZHANG Kexin, XU Ning, BAI Xin. High Speed Railway Comprehensive Tests with Speed above 400 km/h in Foreign Countries[J]. China Railway, 2024(02): 20-30.
[4] 时瑾, 孙征南, 孙宪夫, 等. 现行350 km/h高铁线路技术条件运营400 km/h高速列车适应性研究[J]. 铁道科学与工程学报, 2020, 17(09): 2171-2180.
SHI Jin, SUN, Zhengnan, SUN Xianfu, et al. Research on the adaptability of high-speed train running at 400 km/h under current 350 km/h high-speed railway technical conditions[J]. Journal of Railway Science and Engineering, 2020, 17(09): 2171-2180.
[5] 李国龙, 高芒芒, 杨飞, 等. 400 km/h高速铁路大跨度桥梁轨道静态长波不平顺验收标准研究[J].铁道科学与工程学报, 2023, 20(05): 1902-1916.
LI Guolong, GAO Mangmang, YANG Fei, et al. Acceptance standard for track static geometric long-wave irregularity of long-span railway bridge under 400 km/h[J]. Journal of Railway Science and Engineering, 2023, 20(05): 1902-1916.
[6] 苏乾坤, 何宁, 庞玲, 等. 400 km/h高速铁路路基地段CRTS Ⅲ型板式无砟轨道静力分析[J]. 高速铁路技术, 2022, 13(05): 20-24.
SU Qiankun, HE Ning, PANG Ling, et al. Static Analysis of CRTS Ⅲ Slab Ballastless Track for 400 km/h High-speed Railway in Subgrade Section[J]. High Speed Railway Technology, 2022, 13(05): 20-24.
[7] MAHDI Y, PEYMAN A. Assessment of railway plain concrete arch bridges subjected to high-speed rains[J]. Structures, 2020, 27: 174-193.
[8] GU Yiwei, NIE Xin, YAN Aiguo, et al. Experimental and numerical study on vibration and structure-borne noise of high-speed railway composite bridge[J]. Applied Acoustics, 2022, 192: 108757.
[9] KODAI M, ANDREA C, CLAUDIO S, et al. Influence of local deck vibrations on the evaluation of the maximum acceleration of a steel-concrete composite bridge for a high-speed railway[J]. Engineering Structures, 2019, 200: 109736.
[10] GALVINA P, ROMERO A, MOLINER E, et al. On the dynamic characterisation of railway bridges through experimental testing[J]. Engineering Structures, 2021, 226, 111261.
[11] GALVINA P, ROMERO A, MOLINER E, et al Two FE models to analyse the dynamic response of short span simply-supported oblique high-speed railway bridges: Comparison and experimental validation[J]. Engineering Structures, 2018, 167, 48-64.
[12] PEYMAN M, ANDREAS A, LARS P, et al. Dynamic behaviour of a short span soil–steel composite bridge for high-speed railways – Field measurements and FE-analysis[J]. Engineering Structures, 2014, 69, 49-61.
[13] 许见超, 葛凯, 王振, 等. 腹板斜裂缝对重载铁路32 m跨度预应力混凝土T梁受力影响仿真分析[J]. 铁道建筑, 2022, 62(04):64-67.
XU Jianchao, GE Kai, WANG Zhen, et al. Simulation Analysis on Influence of Web Inclined Crack on Stress of 32 m-span Prestressed Concrete T-girder of Heavy Haul Railway[J]. Railway Engineering, 2022, 62(04):64-67.
[14] 李进洲, 余志武, 宋力. 重载铁路桥梁疲劳变形和裂缝扩展规律研究[J]. 土木工程学报, 2013, 46(9): 72-82.
LI Jinzhou, YU Zhiwu, SONG Li. Study on Fatigue Deflection and Crack Propagation Laws of Heavy-haul Railway Bridges[J]. China Civil Engineering Journal, 2013, 46(9): 72-82.
[15] 苏文成. 重载运输条件下铁路常用跨度桥梁结构检定和T梁斜裂缝受力状态评估技术研究[D]. 北京: 中国铁道科学研究院, 2024.
SU Wencheng. Research on Structural Verification of Common Span Bridgeand Stress State Evaluation of T Beam Inclined Crack under Heavy-haul Transportation[D]. Beijing: China academy of railway sciences, 2024
[16] 俞昊然, 李维滨, 郎泰申, 等. 主余震作用下顶底角钢自复位梁柱节点的抗震性能研究[J]. 振动与冲击, 2022, 41(12): 238-246.
YU Haoran, LI Weibin, LANG Taishen, et, al. Seismic behavior of self-centering beam-to-column connections with top-and-seat angles under mainshock-aftershock sequences[J]. Journal of Vibration and Shock, 2022, 41(12): 238-246.
[17] 翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京: 科学出版社, 2015, 18-26.
ZAI Wanming. Vehicle-Track Coupling Dynamics [M]. Fourth Edition. Beijing: Science Press, 2015, 18-26.
[18] TB/T 3352-2014 高速铁路无砟轨道不平顺谱[S]. 北京: 国家铁路局, 2014.
TB/T 3352-2014 PSD of Ballastless Track Irregularities of High-Speed Railway [S]. Beijing: National Railway Administration of People's Republic of China, 2014.
[19] 李岗博. 基于XFEM的焊接接头SCC扩展行为及断裂参量变化研究[D]. 西安: 西安科技大学, 2021: 11-17.
LI Gangbo. Study on SCC Propagation Behavior and Fracture Parameter Change of Welded Joints Based on XFEM[D]. Xian: Xi’an University of Science and Technology, 2021: 11-17.
[20] 路鑫, 刘勇, 陈才, 等. 裂缝性状对隧道衬砌结构受力特征及安全性能影响研究[EB/OL].(2023-11-29)[2024-03-14].https://link.cnki.net/urlid/61.1442.TU.20231128.1124.002.
[21] 娄荣, 陈威文, 钟振, 等. 基于XFEM的RC梁静态破碎研究[J]. 工程爆破, 2020, 26(01): 15-20.
LOU Rong, CHEN Weiwen, ZHONG Zhen, et, al. Research on static cracking of RC beam based on XFEM[J]. Engineering Blasting, 2020, 26(01): 15-20.
[22] 鲁乃唯, 刘静, 王凯, 等. 随机轮载下钢桥面顶板与纵肋焊缝疲劳裂纹扩展特性研究[J]. 振动与冲击, 2024, 43(01): 193-201.
LU Naiwei, LIU Jing, WANG Kai, et, al. Fatigue crack propagation characteristics of steel bridge deck roof-longitudinal rib weld joint under random wheel load[J]. Journal of Vibration and Shock, 2024, 43(01): 193-201.
[23] 丁力栋, 丁晓唐, 袁存. 混凝土断裂能的统计模型和标准值研究[J]. 河北工程大学学报(自然科学版), 2017, 34(4): 5-9.
DING Lidong, DING Xiaotang, YUAN Cun. Research on Statistical Model and Characteristic Values for the Fracture Energy of Concrete[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2017, 34(4): 5-9.
[24] 马英群. 基于结构声强可视化的航空发动机转子-支承-机匣耦合系统振动能量传递特性研究[D]. 北京:中国科学院大学(中国科学院工程热物理研究所), 2020: 3-14.
MA Yingqun. Investigation on Vibration Energy Transmission Characteristics of Aero-Engine Rotor-Support-Casing Coupling System Based on Visualization of Structural[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2020: 3-14.
[25] 高浩, 王君明, 勾红叶, 等. 高速行车激励下高铁桥梁顶板裂缝扩展及其对振动能量分布的影响[EB/OL]. (2023-10-31)[2024-03-14].https://doi.org/10.13238/j.issn.1004-2954.202305220003.

PDF(2839 KB)

211

Accesses

0

Citation

Detail

段落导航
相关文章

/