基于Seq2Seq双向模型的水锤压力预测

吴罗长1, 刘振兴1, 雷洁2, 颜建国1, 郭鹏程1, 孙帅辉1, 马晋阳3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 99-106.

PDF(2994 KB)
PDF(2994 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (3) : 99-106.
振动理论与交叉研究

基于Seq2Seq双向模型的水锤压力预测

  • 吴罗长1,刘振兴1,雷洁2,颜建国*1,郭鹏程1,孙帅辉1,马晋阳3
作者信息 +

Prediction of water hammer pressure based on Seq2Seq bidirectional model

  • WU Luochang1, LIU Zhenxing1, LEI Jie2, YAN Jianguo*1, GUO Pengcheng1,SUN Shuaihui1, MA Jinyang3
Author information +
文章历史 +

摘要

水锤计算对保障长距离输水工程管网系统安全稳定运行具有重要意义,但传统水锤数值方法存在模型复杂、计算量大的问题。为此,在自主开发的瞬态流实验平台上,通过支路快速关阀产生水锤,获取了不同流量和压力条件下的瞬态水锤压力。试验参数范围为:体积流量15~55 m3/h,压力150~450 kPa。采用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)方法对水锤信号进行滤波,并对水锤压力的变化规律进行了深入的研究分析。基于双向门控循环单元(Bidirectional Gate Recurrent Unit,BiGRU),建立了用于水锤压力预测的序列到序列(Sequence-to-Sequence,Seq2Seq)双向模型。结果表明,Seq2Seq双向预测模型能有效预测支路水锤,其预测数据决定系数在0.8以上,水锤特征参数预测准确率超过98%。研究成果可为水锤压力预测提供了一种新方法。

Abstract

The calculation of water hammer is of great significance for ensuring the safe and stable operation of long-distance water supply network systems. However, traditional numerical methods for water hammer calculation suffer from issues of complex modeling and large computational requirements. To address this, transient flow experiments were conducted on a self-developed experimental platform, where water hammer was induced by rapidly closing a branch valve, and transient water hammer pressures were obtained under different flow rates and pressure conditions. The experimental parameters ranged from a volume flow rate of 15 to 55 m3/h and a pressure of 150 to 450 kPa. The Ensemble Empirical Mode Decomposition (EEMD) method was employed to filter the water hammer signals, and a thorough analysis of the water hammer pressure variations was conducted. Subsequently, leveraging the Bidirectional Gate Recurrent Unit (BiGRU), a Sequence-to-Sequence (Seq2Seq) bidirectional model was established for predicting water hammer pressures. The results indicated that the Seq2Seq bidirectional prediction model could effectively forecast branch water hammer, with a determination coefficient of over 0.8 for the predicted data, and an accuracy of over 98% in predicting water hammer characteristic parameters. This research outcome provides a new approach for water hammer pressure prediction.

关键词

水锤 / 瞬变流 / Seq2Seq / EEMD

Key words

water hammer / transient flow / Seq2Seq;EEMD

引用本文

导出引用
吴罗长1, 刘振兴1, 雷洁2, 颜建国1, 郭鹏程1, 孙帅辉1, 马晋阳3. 基于Seq2Seq双向模型的水锤压力预测[J]. 振动与冲击, 2025, 44(3): 99-106
WU Luochang1, LIU Zhenxing1, LEI Jie2, YAN Jianguo1, GUO Pengcheng1, SUN Shuaihui1, MA Jinyang3. Prediction of water hammer pressure based on Seq2Seq bidirectional model[J]. Journal of Vibration and Shock, 2025, 44(3): 99-106

参考文献

[1] 汪顺生, 郭新源. 基于Bentley Hammer的气囊式空气罐的水锤防护研究[J]. 振动与冲击, 2022, 41 (06): 177-182+244.
WANG Shunsheng,GUO Xinyuan. Water hammer protection effect of gasbag-type pneumatic tank based on the analysis using the Bentley Hammer software[J]. Journal of vibration and shock, 2022, 41 (06): 177-182+244.
[2] 石喜, 吕宏兴, 朱德兰, 等. 枝状管网水力瞬变工况的试验与数值模拟[J]. 排灌机械工程学报, 2013, 31 (05): 406-412.
SHI Xi,LU Hongxing1,ZHU Delan1, et al. Experiment and numerical simulation of hydraulic transients in branched pipe network[J]. Journal of Drainage and Irrigation Mechanical Engineering, 2013, 31 (05): 406-412.
[3] 魏闯, 李明思, 李东伟, 等. PVC管网中支管连接方式对干管水锤压力叠加的影响[J]. 农业工程学报, 2012, 28 (18): 88-97.
WEI Chuang, LI Mingsi, LI Dongwei, et al. Effects of connecting patterns of branch pipes on superposed water hammer pressure in trunk pipe for the PVC pipeline system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 88-97.
[4] 张挺, 林震寰, 林通, 等. 内激励型振荡衰减流作用下输流管道动力不稳定分析[J]. 振动与冲击, 2021, 40 (03): 284-290.
ZHANG Ting,LIN Zhenhuan,LIN Tong, et al. Dynamic instability analysis of pipeline conveying fluid under action of internally excited oscillation attenuation flow[J]. Journal of vibration and shock, 2021, 40 (03): 284-290.
[5] Moghaddas SMJ. The steady-transient optimization of water transmission pipelines with consideration of water-hammer control devices: a case study[J]. Journal of water supply, 2018, 67 (5-6): 556-565.
[6] 汪怡然, 俞晓东, 石林, 等. 输水管道含沙水锤模型及特性研究[J]. 水利学报, 2022, 53 (08): 984-990.
WANG Yiran,YU Xiaodong,SHI Lin, et al. Models and characteristics of sand-contained water hammer in water transfer conduit[J]. Journal of Hydraulic Engineering, 2022, 53 (08): 984-990.
[7] 裴强, 王延武, 郭少霞,等. 基于波动法的城市地下管线动态损伤识别[J]. 沈阳建筑大学学报(自然科学版), 2016, 32 (04): 667-674.
PEI Qiang,WANG Yanwu,GUO Shaoxia, et al. Underground Pipeline Damage Identification Based on the Fluctuations Theory[J]. Journal of Shenyang Jianzhu University (Natural Science), 2016, 32 (04): 667-674.
[8] Abdel-Gawad HAA, Djebedjian B. Modeling water hammer in viscoelastic pipes using the wave characteristic method[J]. Applied Mathematical Modelling, 2020, 83: 322-341.
[9] Qadi El Idrissi A, Goncalves da Silva E, Zeidan D. Numerical studies of two-phase water hammer flows using Godunov methods[J]. Annals of Nuclear Energy, 2023, 182: 109578.
[10] L. SV, B. WE. Waterhammer and surge control[J]. Annual Review of Fluid Mechanics, 1974, 6 (1): 57-73.
[11] Sibetheros I, Holley ER, Branski JM. Spline Interpolations for Water Hammer Analysis[J]. Journal of Hydraulic Engineering, 1991, 117: 1332-1351.
[12] Afshar MH, Rohani M. Water hammer simulation by implicit method of characteristic[J]. International Journal of Pressure Vessels and Piping, 2008, 85 (12): 851-859.
[13] Koo B. A novel implicit method of characteristics using pressure-referenced correction for transient flow in natural gas pipelines[J]. Journal of Natural Gas Science and Engineering, 2022, 104: 104665.
[14] Fathi-Moghadam M, Kiani S. Simulation of transient flow in viscoelastic pipe networks[J]. Journal of Hydraulic Research, 2020, 58: 531 - 540.
[15] 牟天蔚, 蒋白懿, 沈丹玉. 基于深度学习框架的供水管网压力异常实时诊断方法[J]. 水电能源科学, 2018, 36 (4): 4.
MU Tianwei,JIANG Baiyi,SHEN Danyu. Real-time Diagnosis Way of Abnormal Pressure in Water Supply System Based on Deep Learning Framework[J].Water Resource and Power, 2018, 36 (4): 4.
[16] Zhang M, Guo Y, Xie Q, et al. Defect identification for oil and gas pipeline safety based on autonomous deep learning network[J]. Computer communications, 2022, 195:14-26
[17] Yan Y, Liu D, Gao B, et al. A Deep Learning-Based Ultrasonic Pattern Recognition Method for Inspecting Girth Weld Cracking of Gas Pipeline[J]. IEEE Sensors Journal, 2020, PP (99): 1-1.
[18] Kim H, Lee J, Kim T, et al. Advanced thermal fluid leakage detection system with machine learning algorithm for pipe-in-pipe structure[J]. Case Studies in Thermal Engineering, 2023, 42: 102747.
[19] Liao Z, Yan H, Tang Z, et al. Deep learning identifies leak in water pipeline system using transient frequency response[J]. Process Safety and Environmental Protection, 2021, 155: 355-365.
[20] Ye J, Do NC, Zeng W, et al. Physics-informed neural networks for hydraulic transient analysis in pipeline systems[J]. Water Research, 2022, 221: 118828.
[21] Shi X, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[J]. Advances in neural information processing systems, 2015, 28.
[22] Wei B, Jun Y, Yulei R, et al. A deep learning framework for financial time series using stacked autoencoders and long-short term memory[J]. PLoS ONE, 2017, 12 (7): e0180944.
[23] Li D, Sun G, Miao S, et al. A short-term electric load forecast method based on improved sequence-to-sequence GRU with adaptive temporal dependence[J]. International Journal of Electrical Power & Energy Systems, 2022, 137: 107627.

PDF(2994 KB)

Accesses

Citation

Detail

段落导航
相关文章

/