旋转输流管拉弯扭耦合振动研究

张博1, 2, 孙东生1, 郑昊楷1, 史云帆1, 丁虎2, 陈立群2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 1-9.

PDF(1749 KB)
PDF(1749 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 1-9.
振动理论与交叉研究

旋转输流管拉弯扭耦合振动研究

  • 张博1,2,孙东生1,郑昊楷1,史云帆1,丁虎2,陈立群2*
作者信息 +

A study on tension-bending-torsional coupling vibration of rotating pipe conveying fluid

  • ZHANG Bo1,2,SUN Dongsheng1,ZHENG Haokai1,SHI Yunfan1,DING Hu2,CHEN Liqun2*
Author information +
文章历史 +

摘要

冷却叶片是重型燃气轮机的核心构件,服役于严峻工况,常常因振动过量而失效。准确掌握冷却叶片振动机理,对重型燃气轮机叶片进行合理化设计与维护具有实际意义。以NACA0012翼型叶片为例,基于Euler-Bernoulli 梁理论将模型简化为含不等大双通道单轴对称性的旋转悬臂输流管,利用假设模态法与 Lagrange 法建立了轴向-弦向-挥舞-扭转四自由度耦合动力学模型。通过和文献结果对比,确认了该研究建立动力学模型的准确性。研究了流体流速、输流管转速、拉伸-弦向耦合和挥舞-扭转耦合效应等对系统固有频率的影响。研究发现:转速对各自由度刚化效应影响不同,导致复杂的模态顺序交换;拉伸-弦向耦合和挥舞-扭转耦合会引发模态转向现象,导致不同阶振动频率降低或升高;对于长细比较大的 Euler-Bernoulli 梁来说,单轴对称截面的非对称性的影响主要集中在挥舞-扭转刚度耦合;在一定转速范围内,挥舞-扭转耦合效应可能诱发系统发生颤振失稳。另外,该研究讨论的轴向力对一维构件扭转振动的硬化效应是对现有振动力学课程中一维波动方程相关内容的延伸与发展,该研究关于结构动力学建模及其数值方法,也可以作为本科生或研究生振动力学课程扩展阅读材料。

Abstract

The cooling blade is the core component of the heavy-duty gas turbine, which is used under severe service conditions and often fails due to excessive vibration.It is of practical significance to accurately understand the vibration mechanism of cooling blades for design and maintenance of gas turbine blades.In this paper, a NACA0012 airfoil blade was taken as an example.The blade was simplified into a rotating cantilever flow tube with a single-axisymmetric section, which contained unequal large double channels, based on the Euler-Bernoulli beam theory.An axial-chord-flap-torsion coupling dynamic model was established by using the assumed mode method and the Lagrange method.By comparing the results with the reference, the accuracy of the dynamic model in this study was confirmed.The effects of fluid flow velocity, infusion tube rotation speed, axial-chord coupling and flap-torsion coupling effect on the natural frequencies of the system were studied.It is found that the rotational speed has different effects on the stiffening effect of each degree of freedom, resulting in complex modal sequence exchange phenomenon.The axial-chord couplings, and the flap-torsion couplings could induce the modal steering phenomenon, resulting in a decrease or increase in the different natural frequencies.For Euler-Bernoulli beams with large slenderness, the influence of the single-axisymmetric section mainly focuses on the flap-torsional stiffness coupling.Within a certain speed range, the flap-torsion coupling effects may induce flutter instability in the system.In addition, the axial force showing a hardening effect on the torsional vibration of one-dimensional components, as discussed in present paper, represents an extension and advancement of the material concerning one-dimensional wave equations within the current curriculum of vibration mechanics.Furthermore, the contributions of structural dynamics modeling and the associated numerical methodologies presented herein are deemed suitable for inclusion as supplementary reading material in both undergraduate and graduate vibration mechanics courses.

关键词

旋转输流管 / 单轴对称 / 假设模态法 / 大变形 / 拉弯扭耦合 / 振动力学课程改革

Key words

rotating pipe conveying fluid / uniaxial symmetry / assumed mode method / large deformation / tension-bending-torsional coupling / curriculum reform of vibration mechanics

引用本文

导出引用
张博1, 2, 孙东生1, 郑昊楷1, 史云帆1, 丁虎2, 陈立群2. 旋转输流管拉弯扭耦合振动研究[J]. 振动与冲击, 2025, 44(4): 1-9
ZHANG Bo1, 2, SUN Dongsheng1, ZHENG Haokai1, SHI Yunfan1, DING Hu2, CHEN Liqun2. A study on tension-bending-torsional coupling vibration of rotating pipe conveying fluid[J]. Journal of Vibration and Shock, 2025, 44(4): 1-9

参考文献

[1] 倪萌, 朱惠人, 裘云,等. 航空发动机涡轮叶片冷却技术综述[J]. 燃气轮机技术, 2005, 18(4): 25-38+38.
NI Meng, ZHU Huiren, QIU Yun, et al. Review of aero-turbine blade cooling technologies [J]. Gas Turbine Technology, 2005, 18(4): 25-38+38.
[2] 杨子龙, 肖蔚岩, 王志强,等. 涡轮叶片冷却通道换热特性研究[J]. 热能动力工程, 2013, 28(4): 341-344+432.
YANG Zilong, XIAO Weiyan, WANG Zhiqiang, et al. Study of the heat exchange characteristics of the cooling passages of a turbine blade [J]. Journal of Engineering for Thermal Energy and Power, 2013, 28(4): 341-344+432.
[3] Paidoussis M P, Michael P. Fluid-Structure Interactions: Slender Structures and Axial Flow [M]. Oxford: Academic Press, 2014.
[4] 张伟, 冯志青, 曹东兴. 航空发动机叶片非线性动力学分析[J]. 动力学与控制学报, 2012, 10(03): 213-221.
ZHANG Wei, FENG Zhiqing, CAO Dongxing. Analysis on nonlinear dynamic of the aero-engine blade [J]. Journal of Dynamics and Control, 2012, 10(03): 213-221.
[5] 陈振林, 陈志同, 朱正清,等. 基于逆向工程的航空发动机叶片再制造修复方法研究[J]. 航空制造技术, 2020, 63(Z2): 80-86+93.
CHEN Zhenlin, CHEN Zhitong, ZHU Zhengqing, et al. Research on remanufacturing and repairing method of aero-engine blade based on reverse engineering [J]. Aeronautical Manufacturing Technology, 2020, 63(Z2): 80-86+93.
[6] 卓义民, 陈远航, 杨春利. 航空发动机叶片焊接修复技术的研究现状及展望[J]. 航空制造技术, 2021, 64(08): 22-28.
ZHUO Yimin, CHEN Yuanhang, YANG Chunli. Research status and prospect of welding repair technology for aero-engine blades [J]. Aeronautical Manufacturing Technology, 2021, 64(08): 22-28.
[7] 徐涛, 王强, 唐洪飞. 气冷涡轮叶片振动特性分析[J]. 机械设计与制造工程, 2022, 51(03): 63-66.
XU Tao, WANG Qiang, TANG Hongfei. Vibration characteristics analysis of air-cooled turbine blades [J]. Machine Design and Manufacturing Engineering, 2022, 51(03): 63-66.
[8] Carnegie W. Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods [J]. Journal of Mechanical Engineering Science, 1959, 1(3): 235-240.
[9] Thomas J, Carnegie W. The coupled bending—bending vibration of pre-twisted tapered blading [J]. Journal of Engineering for Industry, 1972, 94(1): 255-266.
[10] Subrahmanyam K B, Kulkarni S. V., Rao J. S. Coupled bending-bending vibrations of pre-twisted cantilever blading allowing for shear deflection and rotary inertia by the Reissner method [J]. International Journal of Mechanical Sciences, 1981, 23(9): 517-530.
[11] Yoo H H, Park J H, Park J H. Vibration analysis of rotating pre-twisted blades [J]. Computers & Structures, 2001, 79(19): 1811-1819.
[12] Yigit A, Scott R A, Ulsoy A G. Flexural motion of a radially rotating beam attached to a rigid body [J]. Journal of Sound and Vibration, 1988, 121(2): 201-210.
[13] Naganathan G, Soni A H. Coupling effects of kinematics and flexibility in manipulators [J]. The International Journal of Robotics Research, 1987, 6(1): 75-84.
[14] Hanagud S, Sarkar S. Problem of the dynamics of a cantilevered beam attached to a moving base [J]. Journal of Guidance Control & Dynamics, 2012, 12(3): 438-441.
[15] Choura S, Jayasuriya S, Medick M A. On the modeling, and open-loop control of a rotating thin flexible beam [J]. Journal of Dynamic Systems, Measurement, and Control, 1991, 113(1): 26-33. 
[16] Yoo H H, Shin S H. Vibration Analysis of Rotating Cantilever Beams [J]. Journal of Sound and Vibration, 1998, 212(5): 807-828.
[17] Yang J B, Jiang L J, Chen D C. Dynamic modelling and control of a rotating Euler–Bernoulli beam [J]. Journal of Sound and Vibration, 2004, 274(3-5): 863-875.
[18] Zhang B, Li Y M. Nonlinear vibration of rotating pre-deformed blade with thermal gradient [J]. Nonlinear Dynamics, 2016, 86(1): 459-478.
[19] Li L, Zhang D G. Free vibration analysis of rotating functionally graded rectangular plates [J]. Composite Structures, 2016, 136(FEB.): 493-504.
[20] Vu T V, Nguyen N H, Khosravifard A, et al. A simple FSDT-based meshfree method for analysis of functionally graded plates [J]. Engineering Analysis with Boundary Elements, 2017, 79(JUN.): 1-12.
[21] Wei Z, Li L, Zhao F. First-order approximate rigid-flexible coupled dynamics analysis of a simple aero-engine blade model with dynamic stiffening effect [J]. Journal of Mechanical Science and Technology, 2021, 35(7): 2997-3003.
[22] Housner G W. Bending vibrations of a pipe line containing flowing fluid [J]. Journal of Applied Mechanics, 1952, 19(2): 205-208.
[23] Skalak R. An extension of the theory of water hammer [J]. Transactions of ASME, 1956, 78: 105-116.
[24] Lin T C, Morgan G W. A Study of axisymmetric vibrations of cylindrical shells as effected by rotatory inertia and shear [J]. Journal of Applied Mechanics, 1956, 23(2): 255-261.
[25] Herrmann G, Mirsky I. Three-dimensional and shell-theory analysis of axially symmetric motions of cylinders [J]. Journal of Applied Mechanics, 1956, 23(4): 563-568.
[26] Cheng S S. Dynamic stability of tube conveying fluid [J]. Journal of the Engineering Mechanics Reviews, 1971, 97(5): 1469-1485.
[27] Paidoussis M P. Flow-induced instabilities of cylindrical structures [J]. Applied Mechanics Reviews, 1987, 40(2): 163-175.
[28] 徐鉴, 杨前彪. 输液管模型及其非线性动力学近期研究进展[J]. 力学进展, 2004, 34(2): 182-194.
XU Jian, YANG Qianbiao. Recent development on models and nonlinear dynamics of pipes conveying fluid [J]. Advances in Mechanics, 2004, 34(2): 182-194.
[29] 刘辉, 邓旭辉, 赵珂,等. 不同约束条件对深海采矿输送管道动力学的影响[J]. 应用力学学报, 2022, 39(03): 506-515.
LIU Hui, DENG Xuhui, ZHAO Ke, et al. Effects of different constraints on the dynamics of pipeline in deep sea mining [J]. Chinese journal of applied mechanics, 2022, 39(03): 506-515.
[30] 颜雄, 魏莎, 毛晓晔,等. 两端弹性支承输流管道固有特性研究[J]. 力学学报, 2022, 54(5): 1341-1352.
YAN Xiong, WEI Sha, MAO Xiaoye, et al. Study on natural characteristics of fluid-conveying pipes with elastic supports at both ends [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1341-1352.
[31] 唐冶, 高传康, 丁千,等. 输流管道动力学与控制的最新进展[J]. 动力学与控制学报, 2023, 21(6): 18-30.
TANG Ye, GAO Chuankang, DING Qian, et al. Review on dynamic and control of pipes conveying fluidan [J]. Journal of Dynamics and Control, 2023, 21(6): 18-30.
[32] Chellapilla K R, Simha H S. Vibrations of fluid-conveying pipes resting on two-parameter foundation [J]. The Open Acoustics Journal, 2008, 1(1): 24-33.
[33] HUANG Y M, LIU Y S , LI B H, et al. Natural frequency analysis of fluid conveying pipeline with different boundary conditions [J]. Nuclear Engineering and Design, 2010, 240(3): 461-467.
[34] Oh Y, Yoo H H. Thermo-elastodynamic coupled model to obtain natural frequency and stretch characteristics of a rotating blade with a cooling passage [J]. International Journal of Mechanical Sciences, 2020, 165:105194.
[35] 张博, 郑昊楷, 孙东生,等. 双通道旋转输流管临界流速和振动模态分析[J]. 力学学报, 2023, 55(1): 182-191.
ZHANG Bo, ZHENG Haokai, SUN Dongsheng, et al. Theoretical analysis on the critical flow velocity and vibration mode of a twin-channel rotating pipe [J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 182-191.
[36] Mertol T, Genel O E, Tatar A, et al. Dynamic analysis of composite wind turbine blades as beams: an analytical and numerical study [J]. Vibration, 2020, 4(1): 1-15.
[37] Ren Y H, Yang S L, Du X H. Modeling and free vibration behavior of rotating composite thin-walled closed-section beams with SMA fibers [J]. Chinese Journal of Mechanical Engineering, 2012, 25(5): 1029-1043.
[38] Warikoo R, Haddara M R. On the free response of propeller blades [J]. International Shipbuilding Progress, 1990, 37(410): 165-176.
[39] Banerjee J R. Coupled bending–torsional dynamic stiffness matrix for beam elements [J]. International Journal for Numerical Methods in Engineering, 1989, 28(6):1283-1298.
[40] Chandra R, Stemple A D, Chopra I. Thin-walled composite beams under bending, torsional, and extensional loads [J]. Journal of Aircraft, 1990, 27(7): 619-626.
[41] Berdichevsky V, Armanios E, Badir A. Theory of anisotropic thin-walled closed-cross-section beams [J]. Composites Engineering, 1992, 2(5-7): 411-432.
[42] Banerjee J R. Explicit analytical expressions for frequency equation and mode shapes of composite beams [J]. International Journal of Solids & Structures, 2001, 38(14): 2415-2426.
[43] 毛崎波, 韩伟. 弯扭耦合刚度对薄壁梁弯扭耦合振动的影响研究[J]. 应用力学学报, 2018, 35(02): 298-303+450.
MAO Qibo, HAN Wei. Coupled bending-torsion vibration analysis of thin-walled beams including bending-torsion rigidity effect [J]. Chinese journal of applied mechanics, 2018, 35(02): 298-303+450.
[44] Chiu Y J, Chen D Z. The coupled vibration in a rotating multi-disk rotor system [J]. International Journal of Mechanical Sciences, 2011, 53(1): 1-10.
[45] Goodier, J N. Elastic torsion in the presence of initial axial stress [J]. Journal of Applied Mechanics, 1950, 17(4): 383-387.
[46] Benjamin T B. Dynamics of a system of articulated pipes conveying fluid. I. theory [J]. Proceedings of the Royal Society of London, 1961, 261(1307): 457-486.
[47] 曹树谦, 张文德, 萧龙翔. 振动结构模态分析:理论,实验与应用(第2版) [M]. 天津: 天津大学出版社, 2014.
CAO Shuqian, ZHAN Wende, XIAO Longxiang. Modal analysis of vibrating structures: theoretical experiments and applications(2nd Edition) [M]. Tianjin: Tianjin University Press, 2014.
[48] Gregory R W, Paidoussis M P. Unstable oscillation of tubular cantilevers conveying fluid I [J]. Theory. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1997, 293(1435): 512-527.
[49] 曹建华,刘永寿,刘伟. 输流曲管面内振动的小波有限元方法研究[J]. 振动与冲击, 2018, 37(17): 256-260
CAO Jianhua, LIU Yongshou, LIU Wei. A wavelet-based finite element method for in-plane vibration of curved pipes[J]. Journal of Vibration and Shock, 2018, 37(17): 256-260
[50] Afolabi D, Mehmed O. On curve veering and flutter of rotating blades [J]. Journal of Engineering for Gas Turbines and Power, 1994, 116(3): 702-708.

PDF(1749 KB)

Accesses

Citation

Detail

段落导航
相关文章

/