车辆-轨道非线性空间耦合动力学精细化模型常常需要耗费更多的机时,如何解决分析精度与计算效率的矛盾,是车辆-轨道非线性空间耦合动力学数值分析中的难点。建立了精细化的车辆-轨道非线性空间耦合动力学模型,构建了在用迹线法搜索轮轨空间接触点中引入轮轨准弹性修正的、更为精细的轮轨接触几何关系,并将迹线法融入到交叉迭代中求解车辆-轨道非线性空间耦合动力学方程,实现了同步进行轮轨接触点搜索与车辆-轨道非线性空间耦合动力学方程求解,提高了模型分析精度和数值计算效率。为验证理论模型的正确性,与相关文献结果进行了对比计算,验证了模型和算法的有效性。最后,分析了模型的四类简化形式对系统响应的影响。研究表明:采用集中支撑的弹性元件模拟钢轨扣件,无法真实反映两侧扣件对钢轨侧滚振动的协同约束作用,将导致计算结果失真,采用分离支撑的弹性元件模拟钢轨扣件更为合理;轨道结构底座板参振对系统响应的影响显著,在模型中应给予考虑;底座板超出轨道板的部分对系统响应的影响较小,所产生的误差在可接受范围内;轨道子系统模型A能兼顾仿真效率和计算精度,适合用作车辆-三层轨道非线性空间耦合系统振动精细化分析模型。
Abstract
The refined model of vehicle-track space coupling system dynamics often requires more computational time.How to solve the contradiction between analysis accuracy and computational efficiency is a difficult problem in the numerical analysis of vehicle-track space coupling system dynamics.in this paper a nonlinear dynamic model of vehicle-refined track structure spatial coupling system was established, a more refined wheel-rail contact geometry relationship was constructed by introducing a quasi-elastic correction in the search for wheel-rail spatial contact points using the trajectory method, and the trajectory method was integrated into the iterative process to solve the nonlinear spatial coupling system dynamics equations of vehicle-track.The synchronous search for wheel-rail contact points and the solution of vehicle-track nonlinear coupling equations were realized, which improved the accuracy of model analysis and numerical calculation efficiency.To verify the correctness of the theoretical model, comparative calculations were performed with relevant literature results, which verified the effectiveness of the model and algorithm.Finally, the influence of four simplified forms of the model on system response was analyzed.The study shows that using concentrated support elastic elements to simulate rail fasteners cannot truly reflect the collaborative constraint effect of fasteners on rail roll vibration on both sides, which will lead to distorted computational results.It is more reasonable to use separated support elastic elements to simulate rail fasteners; the influence of base plate vibration on system response is significant and should be considered in the model; the influence of the part of the base plate exceeding the track plate on system response is small, and the resulting error is within an acceptable range; track subsystem model A can balance simulation efficiency and computational accuracy, and is suitable for use as a refined analysis model for vehicle-three-layer track nonlinear space coupling system vibration.
关键词
车辆-轨道非线性空间耦合动力学 /
高速铁路 /
交叉迭代 /
准弹性修正 /
有限元模型
{{custom_keyword}} /
Key words
vehicle-track spatial coupling system dynamics /
high speed railway /
cross-iteration /
quasi elastic correction /
finite element model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]翟婉明.车辆-轨道耦合动力学理论的发展与工程实践[J].科学通报, 2022,67(32): 3793-3807.
ZHAI Wanming.Development of vehicle-track coupling dynamics theory and engineering practice[J].Science Bulletin, 2022,67(32): 3793-3807.
[2]MAZILU T, DUMITRIU M, TUDORACHE C, et al.Using the Green’s functions method to study wheelset/ballasted track vertical interaction[J].Mathematical and Computer Modelling, 2011,54: 261-279.
[3]SADEGHI J, KHAJEHDEZFULY A, ESMAEILI M, et al.Investigation of rail irregularity effects on wheel/rail dynamic force in slab track: comparison of two and three dimensional models[J].Journal of Sound and Vibration, 2016,374: 228-244.
[4]翟婉明.车辆-轨道耦合动力学[M].4版.北京:科学出版社, 2015.
[5]雷晓燕.高速铁路轨道动力学: 模型、算法与应用[M].2版.北京: 科学出版社, 2021.
[6]张斌,雷晓燕.基于车辆-轨道单元的无砟轨道动力特性有限元分析[J].铁道学报, 2011,33(7): 78-85.
ZHANG Bin, LEI Xiaoyan.Analysis on dynamic behavior of ballastless track based on vehicle and track elements with finite element method[J].Journal of Railway, 2011,33(7): 78-85.
[7]刘林芽,崔巍涛,秦佳良,等.一种高精度轨道单元及其在车辆-轨道耦合系统的应用[J].铁道学报, 2023,45(12): 112-122.
LIU Linya, CUI Weitao, QIN Jialiang, et al.A high precision track element model and its application to vehicle-track coupling systems[J].Journal of Railways, 2023,45(12): 112-122.
[8]雷晓燕,王海.车辆-轨道空间非线性耦合系统交叉迭代算法及应用[J].振动与冲击, 2023,42(10): 136-143.
LEI Xiaoyan, WANG Hai.Cross-iterative algorithm and its application to the analysis of vehicle-track spatial nonlinear coupling systems[J].Journal of Vibration and Shock, 2023,42(10): 136-143.
[9]LEI X Y, WANG H.Dynamic analysis of the high speed train-track spatial nonlinear coupling system under track irregularity excitation[J].International Journal of Structural Stability and Dynamics, 2023,14(23): 1-32.
[10]陈兆玮.高速铁路桥墩沉降对行车性能影响的研究[D].成都: 西南交通大学, 2017.
[11]徐金辉.高速车辆-轨道耦合系统随机振动分析及轨道不平顺评价方法研究[D].成都: 西南交通大学, 2016.
[12]王伟.车-轨(桥)耦合系统随机动力学分析与行车安全可靠性评估[D].大连: 大连理工大学, 2019.
[13]辛欣,任尊松,李响.高速轨道结构振动及传递特性[J].机械工程学报, 2020,56(20): 146-154.
XIN Xin, REN Zunsong, LI Xiang.Vibration characteristics and transmission of high-speed track structures[J].Journal of Mechanical Engineering, 2020,56(20): 146-154.
[14]王海.车辆-轨道系统空间耦合振动分析[D].南昌: 华东交通大学, 2023.
[15]祝启峰.高速动车组二系悬挂空气弹簧的研究[D].石家庄: 石家庄铁道大学, 2018.
[16]胡于进.有限元分析及应用[M].北京: 清华大学出版社, 2009.
[17]吴神花.车辆-轨道非线性耦合系统的交叉迭代算法及应用[D].南昌: 华东交通大学, 2015.
[18]张斌.固定辙叉道岔振动系统数值仿真理论及其应用研究[D].上海: 同济大学, 2018.
[19]倪平涛,王开文,张卫华,等.轮轨接触关系计算方法[J].交通运输工程学报, 2006,6(4): 10-13.
NI Pingtao, WANG Kaiwen, ZHANG Weihua, et al.Calculation method of wheel-rail contact relation[J].Journal of Traffic and Transportation Engineering, 2006,6(4): 10-13.
[20]干锋.高速列车轮轨接触关系研究[D].成都: 西南交通大学, 2015.
[21]马登科,时瑾,王英杰.考虑扣件系统非线性力学行为的车辆与轨道动力分析模型[J].中南大学学报(自然科学版), 2023,54(11): 4573-4583.
MA Dengke, SHI Jin, WANG Yingjie.Dynamic analysis model of vehicle and track considering nonlinear mechanical behavior of fastener system[J].Journal of Central South University(Natural Science Edition), 2023,54(11): 4573-4583.
[22]胡坤,胡婷婷,马海峰等.ANSYS CFD入门指南—计算流体力学基础及应用[M].北京: 机械工业出版社, 2018.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}