箱装体局域共振超材料封板抑振特性研究

王帅1, 2, 马炳杰1, 2, 3, 童宗鹏1, 2, 3, 殷长春1, 3, 张丽1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 118-125.

PDF(2002 KB)
PDF(2002 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 118-125.
振动理论与交叉研究

箱装体局域共振超材料封板抑振特性研究

  • 王帅*1,2,马炳杰1,2,3,童宗鹏1,2,3,殷长春1,3,张丽1
作者信息 +

Vibration suppression performance of case module metamaterial sealing plate

  • WANG Shuai*1,2,MA Bingjie1,2,3,TONG Zongpeng1,2,3,YIN Changchun1,3,ZHANG Li1
Author information +
文章历史 +

摘要

为有效解决箱装体200Hz以下低频振动控制难题,提升箱装体底架的抑振性能,本文以箱装体底架封板为研究对象,建立了箱装体底架有限元模型,分析了底架振动特性。在此基础上,采用布洛赫定理与平面波展开法建立了局域共振胞元理论模型,提出了局域共振超材料封板设计方法,计算了箱装体底架封板振动响应,评估了局域共振型箱装体底架振动抑制性能,实现了200Hz以下频段内窄带振动的有效控制。箱装体局域共振超材料封板设计方法的提出丰富了箱装体底架振动控制技术,为后续局域共振超材料技术在船舶振动控制工程应用提供了参考。

Abstract

In order to effectively suppress structural vibration below 200Hz, the finite element model of the gas turbine module bottom frame was built. The vibration characteristics of the bottom frame were analyzed. Based on Bloch's theorem and plane wave expansion method, the local resonance cell theory model was established. A design method of the local resonance sealing plate was proposed. The vibration response of the sealing plate on the gas turbine module was calculated. The vibration suppression performance of the local resonance bottom frame on the module was evaluated. Results show that the local resonance metamaterial technique can effectively attenuate the narrow-band vibration below 200Hz. The design method of the local resonance metamaterial sealing plate proposed in this paper can provide a new feasible means of achieving low frequency vibration control. Furthermore, the results provide a reference for ship vibration suppression.

关键词

箱装体 / 低频 / 振动特性 / 局域共振 / 带隙

Key words

Module / Low frequency / Vibration suppression performance / Locally resonant / Bandgap

引用本文

导出引用
王帅1, 2, 马炳杰1, 2, 3, 童宗鹏1, 2, 3, 殷长春1, 3, 张丽1. 箱装体局域共振超材料封板抑振特性研究[J]. 振动与冲击, 2025, 44(4): 118-125
WANG Shuai1, 2, MA Bingjie1, 2, 3, TONG Zongpeng1, 2, 3, YIN Changchun1, 3, ZHANG Li1. Vibration suppression performance of case module metamaterial sealing plate[J]. Journal of Vibration and Shock, 2025, 44(4): 118-125

参考文献

[1] 谢溪凌, 董广明, 林枫等. 船舶动力与传动装置振动控制技术发展研究[J]. 中国工程科学,2022,24(06):193-202.
Xie Xiling, Dong Guangming, Lin Feng, et al. Development of Vibration Control Technologies for Marine Power and Gearing Systems[J]. Strategic Study of CAE, 2022, 24(06): 193-202.
[2] 张鑫, 李坚波 ,陈林等. 船舶动力设备基座减振优化设计与试验研究[J]. 噪声与振动控制,  2023, 43(06): 196-201.
Zhang Xin, Li Jianbo, Chen Lin, et al. Vibration Reduction Optimization Design and Test Study on Ship Power Equipment Base[J]. Noise and Vibration Control, 2023, 43(06): 196-201.
[3] Yang T, Wu L, Li X, et al. Combining active control and synchro phasing for vibration isolation of a floating raft system: An experimental demonstration[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2021, 40(2): 1105-1114.
[4] 任明可, 谢溪凌, 黄志伟等. 新型橡胶‒电磁复合主被动隔振器研究[J]. 振动与冲击,  2021, 40(23): 32‒37.
Ren Minke, Xie Xiling, Huang Zhiwei, et al. Novel rubber- electromagnetic composite active/passive vibration isolator [J]. Journal of Vibration and Shock, 2021, 40(23): 32‒37.
[5] 刘西安, 杨德庆, 李清. 船舶基座阻抗计算的梯度网格模型方法[J]. 中国造船,  2020, 61(04): 20-31.
Liu Xian, Yang Deqing, Li Qing. A Gradient Grid Model for Impedance Calculation of Ship Foundation[J]. Shipbuilding of China, 2020, 61(04): 20-31.
[6] 温华兵, 刘林波, 夏兆旺等. 复合阻振技术在舰船支撑结构中的应用研究[J]. 船舶力学,  2015, 19(07): 866-873.
Wen Huabing, Liu Linbo, Xia Zhaowang, et al. Applied research on vibration transmission performance of the composite vibration-isolating for the base structure of ship[J]. Journal of Ship Mechanics, 2015, 19(07): 866-873.
[7] 夏兆旺, 史德祥, 杨淇等. 基于阻振质量的船舶基座结构减振性能分析[J]. 噪声与振动控制, 2023, 43(05): 227-231.
Xia Zhaowang, Shi Dexiang, Yang Qi, et al. Vibration Damping Performance Analysis of Ship Base Structures Based on Anti-vibration Mass[J]. Noise and Vibration Control, 2023, 43(05): 227-231.
[8] Takezawa, Daifuku A, Nakano M, Nakagawa Y, Yamamot K, Kitamura T, Mitsuru. Topology optimization of damping material for reducing resonance response based on complex dynamic compliance[J]. Journal of Sound and Vibration, 2016, 365.
[9] 桂洪斌, 窦松然, 李承豪. 环肋圆锥壳基座振动传递的粘弹性阻尼控制技术研究[J]. 船舶力学, 2016, 20(10): 1330- 1337.
Gui Hongbin, Dou Songran, Li Chenghao. Study on viscoelastic damping control technology for vibration transmission of conical shell base with frame[J]. Journal of Ship Mechanics, 2016, 20(10): 1330- 1337.
[10] 叶林昌, 肖望强, 沈建平等. 基于粒子阻尼的动力装置基座减振优化设计研究[J]. 振动与冲击,  2021, 40(03):40-47.
Ye Linchang, Xiao Wangqiang, Shen Jianping, et al. Vibration reduction optimization design of power plant installation base based on particle damping[J]. Journal of Vibration and Shock, 2021, 40(03):40-47.
[11] Li Y, Xu D. Vibration attenuation of high dimensional quasi-zero stiffness floating raft system[J]. International Journal of Mechanical Sciences, 2017, 126: 186‒195.
[12] 杨康, 杨德庆, 吴秉鸿. 高传递损失基座阻抗优化设计法[J]. 振动与冲击,  2019,  38(06): 7-14.
Yang Kang, Yang Deqing, Wu Binghong. Impedance optimization design of base structures with high transmission loss[J]. Journal of Vibration and Shock, 2019, 38(06): 7-14.
[13] Tom B, Arthur B, Ruud V. Active vibration control for underwater signature reduction of a navy ship[C]. Cairo: The 17th International Congress on Sound & Vibration (ICSV17), 2010.
[14] Mitsuhashi K, Biwa T, Mizuhara S. Application of active vibration isolating system to diesel engine mounting[C]. Tianjin: International Congress on Combustion Engines (CIMAC), 1989.
[15] Berkman E F, Bender E K. Perspectives on active noise and vibration control[J]. Sound and Vibration,1997,31(1):80‒94.
[16] 杨铁军, 李新辉, 朱明刚等. 船用柴油发电机组主动减振试验研究[J]. 振动工程学报, 2013, 26(2): 160‒168.
Yang Tiejun, Li Xinhui, Zhu Minggang, et al. Experimental investigation of active vibration control for diesel engine generators in marine applications[J]. Journal of Vibration Engineering, 2013, 26(2): 160‒168.
[17] 王迎春, 马石, 李彦等. 主动控制技术在船舶振动噪声控制中的应用[J]. 海军工程大学学报, 2021, 33(4): 56‒64.
Wang Yingchun, Ma Shi, Li Yan, et al. Application of active control technology on ship vibration and noise[J]. Journal of Naval University of Engineering,2021,33(4):56‒64.
[18] PAN K ,DING J Y , ZHANG W, et al. The Negative Poisson’s Ratio Ship Base Design and Vibration Isolation Performance Analysis[J]. Applied Sciences, 2021, 11(23): 11167-11167.
[19] 秦浩星, 杨德庆. 声子晶体负泊松比蜂窝基座的减振机理研究[J]. 振动工程学报, 2019, 32(03): 421-430.
Qin Haoxing, Yang Deqing. Vibration reduction mechanism for phononic crystal cellular mount with auxetic effect[J]. Journal of Vibration Engineering, 2019, 32(03): 421-430.
[20] Wang S, Wang M Q, Guo Z W. Adjustable low-frequency bandgap of flexural wave in an Euler-Bernoulli meta-beam with inertial amplified resonators[J]. Physics Letters A, 2021, 417: 127671.
[21] Xie B L, Sheng M P, Wang M Q, et al. Ultralow-frequency flexural wave attenuation in a quasi-zero-stiffness locally resonant beam[J]. Journal of vibration and control, 2023, 29(21-22): 4999-5008.
[22] Wen H B, Jiang J S, Huang H W, et al. Acoustic characteristics of composite structures with 2D acoustic black holes and stiffened plates[J]. Applied Acoustics, 2024, 216109805.

PDF(2002 KB)

182

Accesses

0

Citation

Detail

段落导航
相关文章

/