基于热-固-声耦合的弹性壁板振动响应分析

王凯伦1, 王虎寅2, 高鹏新2, 瞿叶高1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 126-133.

PDF(2087 KB)
PDF(2087 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 126-133.
振动理论与交叉研究

基于热-固-声耦合的弹性壁板振动响应分析

  • 王凯伦1,王虎寅2,高鹏新2,瞿叶高*1
作者信息 +

Thermal vibration response of typical thermal protection structural components based on thermal-acoustic-solid coupling

  • WANG Kailun1,WANG Huyin2,GAO Pengxin2,QU Yegao*1
Author information +
文章历史 +

摘要

高速飞行器热防护壁板在高温、强噪声工作环境会表现出热屈曲、非线性热弹性振动等复杂动力学响应。本文考虑热防护壁板连接间隙接触,建立了热防护壁板热弹性动力学有限元数值模型,采用热响应与频域线性摄动分析叠加的耦合法对热防护壁板随机振动响应进行了分析,研究了不同连接方法对模态分析结果和热防护壁板的热振响应性能模拟精度的影响。通过数值模型的振动模态分析,与模态测试结果对比验证了模型的准确性。随后开展约束连接、连接器连接以及面接触连接三种不同的连接方式下热防护壁板的热振响应性能研究和试验研究。研究结果表明:热防护壁板的热振响应的计算结果与试验测量结果一致, 冯•米塞斯应力均方根值与试验测量值之间的最大误差为5%,随机响应与试验测量结果一致。本研究为热-固-声耦合的弹性壁板的热振响应性能分析提供了一种有效的方法,为弹性壁板的热振响应性能预测提供了有效的参考。

Abstract

Thermal protection panels of high-speed aircraft exhibit complex dynamic responses such as thermal buckling and nonlinear thermoelastic vibrations under high-temperature and high-noise working conditions. This paper considers the contact of gaps in the thermal protection panels, establishes a finite element numerical model of the thermoelastic dynamics of the thermal protection panels, and uses a coupling method of thermal response and frequency domain linear perturbation analysis to analyze the random vibration response of the thermal protection panels. The impact of different connection methods on the modal analysis results and the simulation accuracy of the thermal vibration response performance of the thermal protection panels is studied. Through the vibration mode analysis of the numerical model, the accuracy of the model is verified by comparing with the modal test results. Subsequently, the thermal vibration response performance research and experimental research of the thermal protection panels under three different connection methods of constraint connection, connector connection, and surface contact connection are carried out. The research results show that the calculation results of the thermal vibration response of the thermal protection panels are consistent with the experimental measurement results, the maximum error between the root mean square value of the von Mises stress and the experimental measurement value is 5%, and the random response is consistent with the experimental results. This research provides an effective method for the analysis of the thermal vibration response performance of elastic panels with thermo-solid-acoustic coupling, and provides an effective reference for the prediction of the thermal vibration response performance of elastic panels. 

关键词

热防护壁板 / 热-声-固耦合 / 热振响应 / 有限元分析

Key words

thermal protection panels / thermal-acoustic-solid coupling / thermal vibration response / finite element analysis

引用本文

导出引用
王凯伦1, 王虎寅2, 高鹏新2, 瞿叶高1. 基于热-固-声耦合的弹性壁板振动响应分析[J]. 振动与冲击, 2025, 44(4): 126-133
WANG Kailun1, WANG Huyin2, GAO Pengxin2, QU Yegao1. Thermal vibration response of typical thermal protection structural components based on thermal-acoustic-solid coupling[J]. Journal of Vibration and Shock, 2025, 44(4): 126-133

参考文献

[1] 俞励松. 典型飞行器结构在热环境和随机载荷作用下的动响应研究 [D]; 哈尔滨:哈尔滨工业大学, 2018.
Yu Lisong. Study on the Dynamic Response of Typical Vehicle Structures under Thermal Environment and Random Loads [D]; Harbin: Harbin Institute of Technology, 2018.
[2] 叶友达, 张涵信, 蒋勤学, 等. 近空间高超声速飞行器气动特性研究的若干关键问题 [J]. 力学学报, 2018, 50(06): 1292-310.
YE You-Da, ZHANG Han-Xin, JIANG Qin-Xue, et al. Some key issues in the study of aerodynamic characteristics of hypersonic vehicles in near-space [J]. Journal of Mechanics, 2018, 50(06): 1292-310.
[3] UYANNA O, NAJAFI H J A A. Thermal protection systems for space vehicles: A review on technology development [J]. Current Challenges and Future Prospects, 2020, 176(1): 341-56.
[4] Yang Y Z, Yang J L, Fang D N. Research progress on thermal protection materials and structures of hypersonic vehicles [J]. Applied Mathematics Mechanics, 2008, 29(1): 51-60.
[5] 吴振强, 张正平, 李海波, 等. C/SiC壁板热噪声复合环境动态响应试验研究 [J]. 实验力学, 2015, 30(06): 741-8.
WU Zhenqiang, ZHANG Zhengping, LI Haibo, et al. Experimental study on the dynamic response of thermal-noise composite environment of C/SiC wall plate [J]. Experimental Mechanics, 2015, 30(06): 741-8.
[6] 吴振强, 张伟, 孔凡金, 等. 热噪声复合环境试验装置研制及其能力验证 [J]. 导弹与航天运载技术, 2014, 1(05): 60-3+7.
WU Zhenqiang, ZHANG Wei, KONG Fanjin, et al. Development of Thermal Noise Composite Environmental Test Device and its Capability Verification [J]. Missile and Space Transportation Technology, 2014, 1(05): 60-3+7.
[7] Cheng H , Li H , Zhang W ,et al.Effects of Radiation Heating on Modal Characteristics of Panel Structures[J].Journal of Spacecraft & Rockets, 2015, 52(4):1-8.
[8] 姚起杭, 姚军. 工程结构的振动疲劳问题 [J]. 应用力学学报, 2006, 23(01): 12-5+167-8.
YAO Qi-Hang, YAO Jun. Vibration fatigue of engineering structures [J]. Journal of Applied Mechanics, 2006, 23(01): 12-5+167-8.
[9] BISHOP N. Vibration fatigue analysis in the finite element environment [J]. 1999, 12(1): 1-10.
[10] 刘龙涛,李传日,程祺,等.某结构件的随机振动疲劳分析[J].振动与冲击, 2013, 32(21): 1000-3835.
LIU Longtao, LI Chuanri, CHENG Qi, et al. Random vibration fatigue analysis of a structural member[J]. Vibration and Shock, 2013, 32(21): 1000-3835.
[11] Le V T , Goo N S .Design, Fabrication, and Testing of Metallic Thermal Protection Systems for Spaceplane Vehicles[J].Journal of Spacecraft and Rockets, 2021, 58(2):1-18.
[12] Kiss, István Z, Rusin,et al. Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization. [J].  Science, 2007, 315(5814): 1136-1140.
[13] 刘赛, 肖凯, 尹进,等. 一种螺栓连接的有限元高精度简化建模方法及系统 [P]. CN201811289099.6, 中国, 2018-10-31
LIU Sai, XIAO Kai, YIN Jin, et al. A finite element high-precision simplified modeling method and system for bolted connections [P]. CN201811289099.6, China, 2018-10-31
[14] 蒋国庆,洪荣,陈万华.螺栓法兰连接结构简化动力学建模及模型参数辨识[J].振动与冲击, 2020, 39(15):6.
JIANG Guoqing,HONG Rong,CHEN Wanhua. Simplified dynamic modeling of bolted flange connection structure and identification of model parameters[J]. Vibration and Shock, 2020, 39(15):6.
[15] 徐孝诚,尹立中.关于结构高频响应分析中有限元网格划分的细化标准[J].振动与冲击, 2002, 21(1):3
XU Xiaocheng,YIN Lizhong. Refinement criteria for finite element meshing in structural high frequency response analysis[J]. Vibration and Shock, 2002, 21(1):3
[16] LIU Z, WANG Y, XIONG X, et al. Structural optimization and air-plasma ablation behaviors of C/C-SiC-(ZrxHf1− x) C composites prepared by reactive melt infiltration method [J]. Corrosion Science, 2023, 222: 111408
[17] DASH B, MAHAPATRA T R, MISHRA D. Numerical vibroacoustic analysis of multi-layered composite structure under hygrothermal loading using coupled FEM-IBEM micromechanical model [J]. Journal of Mechanical Engineering Science, 2023, 0(0): 1-10
[18] 沙云东,朱付磊,赵奉同,等.薄壁结构高温随机振动疲劳寿命估算方法[J].振动与冲击, 2020, 39(2):9.
SHA Yundong,ZHU Fulei,ZHAO Fengtong,et al. Fatigue life estimation method for thin-walled structures subjected to high-temperature random vibration[J]. Vibration and Shock, 2020, 39(2):9.

PDF(2087 KB)

Accesses

Citation

Detail

段落导航
相关文章

/