大型石化管道服役期间,受复杂工作环境影响,可能发生高频剧烈振动,影响结构正常使用,并存在较大的安全隐患,因此,很有必要对此类振动现象开展相关研究。本文以某丙烷脱氢装置的大型管道为对象,基于现场实测数据,分析了管道振动特性,并利用传递矩阵法,获取了管道内部不同工况下的气柱固有频率。研究发现:管道振动的加速度幅值大、位移幅值小,振动频率较高,且卓越频率之间存在明显的倍数关系,即倍频现象,如26Hz和52Hz;气柱固有频率与管道固有频率接近,结合压缩机的激励频率,引发了管道的共振现象。本文采用的方法简便高效,可用于分析丙烷脱氢装置大型管道的振动特性,探求管道振动的原因,并为类似管道的性能评估和减振方案设计提供参考依据。
Abstract
During dehydrogenation operations, large-scale petrochemical pipelines are prone to high-frequency severe vibrations and significant noise pollution due to complex working environments, affecting structural integrity and posing safety hazards. Therefore, it is essential to study the vibration phenomena and mechanisms. This paper focuses on a large pipeline of a propane dehydrogenation unit, analyzes the vibration characteristics based on field measurement data, and uses the transfer matrix method to obtain the natural frequencies of the gas column under different working conditions. Findings indicate that the pipeline has high vibration acceleration but low displacement, with a high frequency and a clear multiple relationship between the dominant frequencies, such as 26Hz and 52Hz. The natural frequency of the gas column is close to that of the pipeline, and the excitation frequency from the compressor leads to resonance. The methods used in this study are simple and efficient, suitable for analyzing the vibration characteristics and causes of large-scale propane dehydrogenation pipelines in practical engineering, and provide a reference for the performance evaluation and vibration reduction design of similar pipelines.
关键词
管道振动 /
倍频现象 /
气柱固有频率 /
传递矩阵法
{{custom_keyword}} /
Key words
pipeline vibration /
frequency multiples phenomena /
natural frequencies of internal gas column /
transfer matrix method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘智勇,高孟理,纪燕飞. 活塞式压缩机管路设计中气柱固有频率的计算方法[J]. 化工机械,2008, (04): 212-215.
LIU Zhi-yong, GAO Meng-li, JI Yan-fei. Calculation Method of the Gas Pole lmmanence Frequency in the Design of the Pipelines of a Reciprocating Compressor [J]. Chemical Engineering & Machinery, 2008, (04): 212-215.
[2] 张 鹏,姚正学,刘思铭. 双弯头天然气管道流固耦合振动特性分析[J]. 安全与环境学报,2022, 22 (01): 115-122.
ZHANG Peng, YAO Zheng-xue, Lu Si-ming. Vibration characteristic analysis of double-elbow natural gas pipeline with fluid.solid interaction [J]. Journal of Safety and Environment, 2022, 22 (01): 115-122.
[3] 吴江海,尹志勇,孙玉东,等. 基于传递矩阵法的U型管流固耦合特性研究[J]. 应用力学学报,2021, 38 (05): 1890-1894.
Wu Jiang-hai, Yin Zhi-yong, Sun Yudong, et al. Study on the fluid structure interaction characteristics of U-Tube based on transfer matrix method [J]. Chinese Journal of Applied Mechanics, 2021, 38 (05): 1890-1894.
[4] Aliabadi H K, Ahmadi A, Keramat A. Frequency response of water hammer with fluid-structure interaction in a viscoelastic pipe [J]. Mechanical Systems and Signal Processing, 2020, 144: 106848.
[5] Liang F, Gao A, Yang X D. Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans[J]. Applied Mathematical Modelling, 2020, 83: 454-469.
[6] 熊 雄,周知进,朱目成,等. 压力脉动作用下管道的流固耦合瞬态分析[J]. 机床与液压,2019, 47 (16): 118-122.
XlONG Xiong, ZHOU Zhi-jin, ZHU Mu-cheng, et al. Transient Analysis of Fluid-structure Interaction of Pipelines under PressurePlusation[J]. Machine Tool & Hydraulics, 2019, 47 (16): 118-122.
[7] 赵 杰,姚冉,王雯昕,等. 往复压缩机管路系统气固耦合振动特性研究[J]. 流体机械,2021, 49 (12): 78-85+94.
ZHAO Jie, YAO Ran, WANG Wen-xin, et al. Study on gas-solid coupling vibration characteristics of reciprocating compressor pipeline system[J]. Fluid Machinery, 2021, 49 (12): 78-85+94.
[8] Tan X, Ding H, Chen L Q. Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model [J]. Journal of Sound and Vibration, 2019, 455: 241-255.
[9] Dehrouyeh-Semnani A M, Dehdashti E, Yazdi M R H, et al. Nonlinear thermo-resonant behavior of fluid-conveying FG pipes [J]. International Journal of Engineering Science, 2019, 144: 103141.
[10] Mao X Y, Shu S, Fan X, et al. An approximate method for pipes conveying fluid with strong boundaries [J]. Journal of Sound and Vibration, 2021, 505: 116157.
[11] 范鑫,舒送,张俊宁,等. 双频激励下微弯液压管道的非线性振动研究[J]. 振动与冲击,2023, 42 (20): 181-187.
FAN Xin, Hu Song, ZHANG Jun-ning, et al. A study on nonlinear vibration of slightly curved hydraulic pipes under dualfrequency excitation [J]. Journal of Vibration and Shock, 2023, 42 (20): 181-187.
[12] 禹贵成,严映华,黎明,等. 往复式压缩机缓冲罐振动分析与控制[J]. 噪声与振动控制,2022, 42 (04): 251-255.
YU Gui-cheng, YAN Ying-hua, LI Ming, et al. Vibration Analysis and Control of Buffer Tanks of Reciprocating Compressors [J]. Noise and Vibration Control, 2022, 42 (04): 251-255.
[13] Liu E, Wang X, Zhao W, et al. Analysis and research on pipeline vibration of a natural gas compressor station and vibration reduction measures [J]. Energy & Fuels, 2020, 35(1): 479-492.
[14] 王浩杰,李晓彬. 海洋平台压缩机管系气流脉动分析[J]. 船舶工程,2020, 42 (07): 15-19+151.
WANG Hao-jie, LI Xiao-bin. Analysis of Gas Pulsation in Offshore Platform Compressor Piping System [J]. Ship Engineering, 2020, 42 (07): 15-19+151.
[15] 柳博瀚,陈正寿,鲍健,等. 管道内流对海洋弹性管振动影响的数值仿真研究[J]. 振动与冲击,2020, 39 (17): 177-185+202.
LU Bo-han, CHEN Zheng-shou, BAO Jian, et al. Numerical simulation for effects of pipeline internal flow on vibration of flexiblmarine pipe [J]. Journal of Vibration and Shock, 2020, 39 (17): 177-185+202.
[16] Daude F, Galon P, Douillet-Grellier T. 1D/3D Finite-Volume coupling in conjunction with beam/shell elements coupling for fast transients in pipelines with fluid–structure interaction [J]. Journal of Fluids and Structures, 2021, 101: 103219.
[17] Mohmmed A O, Al-Kayiem H H, Osman A B, et al. One-way coupled fluid–structure interaction of gas–liquid slug flow in a horizontal pipe: Experiments and simulations [J]. Journal of Fluids and Structures, 2020, 97: 103083.
[18] Wu J, Zheng S, Wang C, et al. Study on pipeline self-excited vibration using transient fluid-structure coupling method [J]. The International Journal of Advanced Manufacturing Technology, 2020, 107: 4055-4068.
[19] Tian J, Yuan C, Yang L, et al. The vibration analysis model of pipeline under the action of gas pressure pulsation coupling [J]. Engineering Failure Analysis, 2016, 66: 328-340.
[20] 黄执. 旋转式压缩机倍频振动噪声抑制研究[D]. 哈尔滨:哈尔滨工业大学, 2020.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}