基于舱室结构特征的水下爆炸冲击响应快速预报方法

梁潇帝, 刘寅东

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 207-216.

PDF(2176 KB)
PDF(2176 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 207-216.
冲击与爆炸

基于舱室结构特征的水下爆炸冲击响应快速预报方法

  • 梁潇帝,刘寅东*
作者信息 +

A rapid prediction method for underwater explosion impact response based on compartment structural characteristics

  • LIANG Xiaodi,LIU Yindong*
Author information +
文章历史 +

摘要

提出一种水下近场非接触爆炸载荷作用下舰船结构冲击响应峰值快速预报新方法。建立多舱段舰船模型,采用拉丁超立方抽样方法设计试验工况,每组工况在不同肋位横剖面处各层甲板、双层底内外底的典型位置布置样本测点,提取每组样本测点的冲击响应峰值,建立冲击响应峰值数据库。采用NSGA-II优化的BP神经网络方法建立船体结构冲击响应峰值快速预报模型。分别将炸药参数(TNT当量、爆距、攻角),船体结构形式参数(甲板、横纵舱壁数量和位置等)和测点与炸点相对位置作为神经网络输入,以峰值加速度、峰值速度、峰值位移作为神经网络输出进行训练。训练完成后对6组爆炸工况的冲击响应峰值进行精度验证。结果表明,与现有有限元仿真预报方法相比本文方法简单实用,与现有快速预报方法相比文本方法考虑了船体结构形式特征对水下爆炸冲击响应的影响,更符合对船体结构水下爆炸冲击响应快速预报的要求。

Abstract

A novel method for rapidly predicting the peak impact response of ship structures under underwater near-field non-contact explosion loads is proposed. A multi-compartment ship model is constructed, and the experimental conditions are designed using the Latin hypercube sampling method. Sample measurement points are arranged at typical positions of each layer of decks and double bottoms at different rib positions along the transverse sections for each set of conditions. The peak impact response of each sample measurement point is extracted to establish a database of peak impact responses. A rapid prediction model for the peak impact response of ship structures is established using the NSGA-II optimized BP neural network method. The parameters of the explosive (TNT equivalent, stand-off distance, angle of attack), parameters of the ship structure form (number and positions of decks, longitudinal and transverse bulkheads, etc.), and the relative positions of measurement points to the detonation point are separately taken as inputs to the neural network. Peak acceleration, peak velocity, and peak displacement are used as outputs for neural network training. After training, the accuracy of peak impact responses for 6 sets of explosion conditions is verified. The results indicate that compared to existing finite element simulation prediction methods, the method proposed in this paper is simpler and more practical. Compared to existing rapid prediction methods, this method takes into account the influence of ship structural features on underwater explosion impact response, thus better meeting the requirements for rapid prediction of underwater explosion impact response of ship structures.

关键词

舰船结构冲击响应 / 水下近场爆炸 / 冲击响应预报 / NSGA-II / BP神经网络

Key words

ship structural impact response / underwater near-field explosion / impact response prediction / NSGA-II / BP neural network

引用本文

导出引用
梁潇帝, 刘寅东. 基于舱室结构特征的水下爆炸冲击响应快速预报方法[J]. 振动与冲击, 2025, 44(4): 207-216
LIANG Xiaodi, LIU Yindong . A rapid prediction method for underwater explosion impact response based on compartment structural characteristics[J]. Journal of Vibration and Shock, 2025, 44(4): 207-216

参考文献

[1] 刘建湖,潘建强,何斌. 各主要海军国家设备抗冲击标准之比较[J]. 应用科技, 2010, 37(9): 17-25.
LIU J H, PAN J Q, HE B. Comparison of anti-shock criteria for equipment in some primary navy countries [J]. Applied Science and Technology, 2010, 37(9): 17-25. 
[2] 程红梁,王海坤,刘建湖, 等. 水面舰艇冲击对人体作用安全限值研究综述[C/OL]. 中国力学学会爆炸力学专业委员会冲击动力学专业组、北京理工大学爆炸科学与技术国家重点实验室(State Key Laboratory of Explosion Science and Technology), 2011: 18. 
CHENG HL, WANG HK, LIU YH, et al. A review of the research on the safety limits of the impact on human body action of surface ships[C]. Shock Dynamics Specialized Group of Explosive Mechanics Committee of Chinese Mechanics Society, State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology(State Key Laboratory of Explosion Science and Technology), 2011: 18. 
 [3]  周心桃,吴国民,李德聪. 舰船抗爆抗冲击技术体系探析[J/OL]. 中国舰船研究, 2023, 18(2): 127-139. 
ZHOU X Y, WU G M, LI D C. Analysis of naval warship blast and shock resistance technology system [J/OL]. Chinese Journal of Ship Research, 2023, 18(2): 127-139.
[4] 古滨,郎天奇,刘翠丹. 基于样本库方法的船舶冲击环境预报 [J]. 舰船科学技术, 2013, 35 (08): 11-17.
GU B, LANG T Q, LIU C D. Research on shock environment of ship based on sample library method [J]. SHIP SCIENCE AND TECHNOLOGY, 2013, 35(8): 11-17. 
[5] 王美婷. 基于概率神经网络的舰船冲击环境预报方法研究[D]. 哈尔滨工程大学, 2019.  
WANG M T. Research on Prediction Method of Ship Impact Environment Based on Probabilistic Neural Network [D/OL].Harbin Engineering University, 2020.
[6] KEIL A H. The response of ships to underwater explosions[R]. David Taylor Model Basin Washington DC, 1961.
[7] LU Z, BROWN A. Surrogate approaches to predict surface ship response to far-field underwater explosion in early-stage ship design[J/OL]. Ocean Engineering, 2021, 225: 108773.
[8] 冯麟涵,杨俊杰,焦立启. 基于RBF神经网络的船舶冲击谱速度数据挖掘与预报[J]. 振动与冲击, 2022, 41 (13): 189-194+210.
FENG L H, YANG J J, JIAO L Q. Data mining and prediction of ship shock spectral velocity based on RBF neural network [J]. JOURNAL OF VIBRATION AND SHOCK, 2022, 41 (13): 189-194+210.
[9] 嵇春艳,季斌,郭建廷,等. 基于声固耦合方法舰船结构冲击响应数值预报研究 [J]. 江苏科技大学学报(自然科学版), 2020, 34 (02): 1-7.
JI C Y,JI B, GUO J, et al. Numerical prediction for shock response of ship structures based on acoustic structure coupling method[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34 (02): 1-7.
[10] 王龙侃. 基于间断伽辽金方法的近场水下爆炸载荷及其对结构冲击响应研究[D]. 哈尔滨工程大学, 2017.
WANG L K. Load Characteristics and Shock Response of Structrues Subjected to Near-Field Underwater Explosion Based on RKDG Method.[D].Harbin Engineering University ,2017.
[11]汪玉,计晨,杜志鹏,等. 远场水下爆炸作用下舰船设备冲击响应一体化动力学模型[J]. 工程力学, 2013, 30 (03): 390-394.
WANG Y, JI C, DU Z P, et al. INTEGRATIVE DYNAMIC MODEL OF THE SHIP HULL AND EQUEPMENTS SUBJECTED TO FAR FIELD UNDERWATER EXPLOSION[J]. ENGINEERING MECHANICS, 2013, 30 (03): 390-394.
[12] 武海军,成乐乐,陈文戈,等. 典型舰船结构的水下爆炸耦合毁伤研究进展 [J]. 北京理工大学学报, 2023, 43 (05): 439-459.
WU H J,CHENG L L,CHEN W G, et al. Review on Coupling Damage Effects of Underwater Explosion on Typical Ship Structures [J]. Transactions of Beijing Institute of Technology, 2023, 43 (05): 439-459.
[13] 梁潇帝, 刘寅东. 基于PCA-BOA-KNN模型的水下爆炸舰船结构破损评估 [J]. 中国舰船研究, 2024, 19(3): 150-157.
LIANG X D, LIU Y D. Breakage assessment of ship structures based on PCA-BOA-KNN model underwater explosions[J]. Chinese Journal of Ship Research, 2024, 19(3): 150-157.
[14] 李樱,林鑫,王诗平等. 近场水下爆炸载荷对舰船结构的局部毁伤特性 [J]. 北京理工大学学报, 2019, 39 (10): 991-998.
LI Y, LIN X, WANG S P, et al. Local Damage Characteristics of Ship Structure by Near Field Explosion Load [J/OL]. Transactions of Beijing Institute of Technology, 2019, 39(10): 991-998.
[15] Peng, Y.X., Zhang, A.M., Ming, F.R., 2021. Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM. Ocean Engineering,2021,222:108576.
[16] 刘文思,陆越,周庆飞,等. 鱼雷近场爆炸复杂载荷及对舰船毁伤模式 [J]. 兵工学报, 2021, 42 (04): 842-850.
LIU W S, LU Y ZHOU Q F, et al. Complex Load of Torpedo Near-field Explosion and Its Damage Mode to Ships [J]. ACTA AR MAMENTARII, 2021, 42 (04): 842-850. 
[17] COLE R H. Underwater Explosions[M]. New Jersey: Princeton University Press, 1948.
[18] 程素秋,陈高杰,王树乐. 某型舰船缩比模型对水下爆炸动态响应的试验研究 [J]. 爆破, 2015, 32 (01): 22-27.
CHENG S Q, CHEN G J, WANG S L. Trial Study on Dynamic Responses of Scaled Ship Model Subjected to Underwater Explosions [J]. BLASTING, 2015, 32(1): 22-27.
[19]刘寅东.高等船舶设计原理[M].大连海事大学出版社,2021.
LIU Y D. Principles of Advanced Ship Design [M]. Dalian Maritime University Press,2021.

PDF(2176 KB)

Accesses

Citation

Detail

段落导航
相关文章

/