1000kV八分裂输电线路负刚度阻尼器防舞的风洞试验研究

楼文娟, 吴蕙蕙, 黄赐荣, 王强

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 21-27.

PDF(1991 KB)
PDF(1991 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 21-27.
振动理论与交叉研究

1000kV八分裂输电线路负刚度阻尼器防舞的风洞试验研究

  • 楼文娟*,吴蕙蕙,黄赐荣,王强
作者信息 +

Wind tunnel test on anti-galloping of a 1 000 kV eight-bundled transmission line by negative stiffness dampers

  • LOU Wenjuan*,WU Huihui,HUANG Cirong,WANG Qiang
Author information +
文章历史 +

摘要

利用磁体相互作用力设计了一种负刚度装置,并与电涡流阻尼器并联制得负刚度阻尼器(negative stiffness damper,NSD)。在导线大比例缩尺模型近端部安装阻尼器进行自振试验,发现阻尼器可以提升系统一阶等效阻尼比,其中NSD的减振性能更佳。以某1 000 kV八分裂输电线路为工程原型,基于模态分解法与动力相似关系,设计了输电导线-阻尼器系统的舞动风洞试验装置,在典型易舞风攻角下,进行了安装不同阻尼器的节段模型风洞试验。结果表明:端部阻尼器对导线的竖向舞动具有较好的抑制效果,能够有效提高导线起舞风速、降低导线竖向舞动幅值,且NSD的抑舞性能优于黏滞阻尼器;但在以扭转向舞动为主的工况下,安装在分裂导线近中心的单阻尼器抑舞效果不佳;针对这种情况给出了双阻尼器并联连接导线的方案,试验验证了这种方案可以有效抑制扭转向舞动。

Abstract

Based on magnetic interaction forces, a negative stiffness device was designed and coupled with an eddy current damper to create a negative stiffness damper (NSD).Self-vibration tests were conducted on a large-scale model of the conductor with dampers installed near its ends, revealing that dampers can enhance the equivalent damping ratio of the conductor, with NSD exhibiting superior vibration reduction performance.Utilizing a 1 000 kV eight-bundled transmission line as an engineering prototype, the test model for the conductor-damper system was designed based on mode decomposition and dynamic similarity principle.Wind tunnel tests were conducted on the segment model with different dampers under typical attack angles.The results indicate that dampers have a significant inhibitory effect on the vertical galloping of the transmission line, increasing the critical wind speed and reducing the vertical amplitude.NSD outperforms traditional viscous dampers in galloping suppression.However, under conditions where torsional galloping dominates, the single damper installed on the split conductor has poor anti-galloping effect.A solution involving dual dampers connected in parallel with the conductor was proposed, and experimental validation demonstrated its effectiveness in suppressing torsional galloping.

关键词

电线路 / 负刚度阻尼器(NSD) / 风洞试验 / 防舞

Key words

transmission line / negative stiffness damper (NSD) / wind tunnel test / anti-galloping

引用本文

导出引用
楼文娟, 吴蕙蕙, 黄赐荣, 王强. 1000kV八分裂输电线路负刚度阻尼器防舞的风洞试验研究[J]. 振动与冲击, 2025, 44(4): 21-27
LOU Wenjuan, WU Huihui, HUANG Cirong, WANG Qiang. Wind tunnel test on anti-galloping of a 1 000 kV eight-bundled transmission line by negative stiffness dampers[J]. Journal of Vibration and Shock, 2025, 44(4): 21-27

参考文献

[1] 赵 彬,刘 彬,朱宽军. 电网舞动灾害应对技术体系研究综述[J]. 四川电力技术, 2022, 45(6): 22-30.
ZHAO Bin, LIU Bin, ZHU Kuan-jun. A Research Review on Technical Response System to Galloping of Power Grid[J]. Sichuan Electric Power Technology, 2022, 45(6): 22-30.
[2] Si J J, Rui X M, Bin L, et al. Development of a Wind Spoiler Anti-Galloping Device for Bundle Conductors of UHV Overhead Transmission Lines[J]. IEEE Transactions on Power Delivery. 2020, 35(3): 1348-1356.
[3] 朱宽军,刘 彬,刘超群,等. 特高压输电线路防舞动研究[J]. 中国电机工程学报, 2008, 33(34): 12-20.
ZHU Kuan-jun, LIU Bin, LIU Chao-qun, et al. Research on Anti-galloping for UHV Transmission Line[J]. Proceedings of the CSEE, 2008, 33(34): 12-20.
[4] 赵 彬,程永锋,王景朝,等. 阻尼间隔棒及双摆防舞器对特高压架空输电导线覆冰舞动特性的影响[J]. 高电压技术, 2016, 42(12): 3837-3843.
ZHAO Bin, CHENG Yong-feng, WANG Jing-chao, et al. Effect of Damping Spacers and Double-swinging Protectors on Iced Galloping Properties for UHV Overhead Transmission Lines[J]. High Voltage Engineering, 2016, 42(12): 3837-3843.
[5] 严 波,崔 伟,何小宝,等. 三相导线三角形排布线路相间间隔棒防舞研究[J]. 振动与冲击, 2016, 35(01): 106-111.
YAN Bo, CUI Wei, HE Xiao-bao, et al. Anti-galloping design of interphase spacers in three-phase conductor lines with triangle arrangement[J]. Journal of vibration and shock, 2016, 35(01): 106-111.
[6] Xu Z, Xu L, Xu F. Study on the Iced Quad-Bundle Transmission Lines Incorporated With Viscoelastic Antigalloping Devices[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME. 2015, 137(6): 061009.
[7] 楼文娟,黄赐荣,陈思然. 输电线路防舞电涡流阻尼器参数优化试验研究[J]. 振动与冲击, 2022, 41(14): 15-23.
LOU Wen-juan, HUANG Ci-rong, CHEN Si-ran. Experimental analysis on optimizing parameters of anti-galloping eddy current dampers for transmission lines. Journal of vibration and shock, 2022, 41(14): 15-23.
[8] 黄赐荣,楼文娟,徐海巍,等. 输电线路防舞阻尼器系统参数分析及设计研究[J]. 工程力学, 2022, 39(12): 87-97.
HUANG Ci-rong, LOU Wen-juan, XU Hai-wei, et al. Research on parameter analysis and design of transmission line-anti-galloping damper system. Engineering Mechanics, 2022, 39(12): 87-97.
[9] Li H, Liu M, Ou J P. Negative stiffness characteristics of active and semi-active control systems for stay cables[J]. Structural Control and Health Monitoring. 2008, 15(2): 120-142.
[10] Zhou P, Li H. Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations[J]. Structural Control and Health Monitoring. 2016, 23(4): 764-782.
[11] Wu B, Shi P F, Ou J P. Seismic performance of structures incorporating magnetorheological dampers with pseudo-negative stiffness[J]. Structural Control and Health Monitoring. 2013, 20(3): 405-421.
[12] Sarlis A A, Pasala D T R, Constantinou M C, et al. Negative Stiffness Device for Seismic Protection of Structures: Shake Table Testing of a Seismically Isolated Structure[J]. Journal of Structural Engineering. 2016, 142(5): 04016005.
[13] 杨巧荣,冉茂来,何文福,等. 隔震结构基于阻尼负刚度装置的地震响应研究[J]. 振动工程学报, 2018, 31(6): 920-929.
YANG Qiao-rong, RAN Mao-lai, HE Wen-fu, et al. Study on seismic response of isolated structure based on damping negative stiffness device[J]. Journal of vibration engineering, 2018, 31(6): 920-929.
[14] 历建刚. 永磁体间的磁力和磁力矩研究[D]. 吉林大学, 2015.
LI Jian-gang. Research on the Force and Torque between Permanent Magnets[D]. Jilin University, 2015.
[15] Lou W J, Huang C R, Huang M F, et al. An aerodynamic anti-galloping technique of iced 8-bundled conductors in ultra-high-voltage transmission lines[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2019, 193: 103972.
[16] Wen Z P, Xu H W, Lou W J. Galloping Stability Criterion for a 3-DOF System Considering Aerodynamic Stiffness and Inertial Coupling[J]. Journal of Structural Engineering. 2022, 148(6). 

PDF(1991 KB)

Accesses

Citation

Detail

段落导航
相关文章

/