吸能构件阻力特性对液压立柱抗冲击特性影响研究

张建卓1, 万传旭1, 肖永惠2, 陈策1, 王涛1, 郭昊1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 217-228.

PDF(2467 KB)
PDF(2467 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 217-228.
冲击与爆炸

吸能构件阻力特性对液压立柱抗冲击特性影响研究

  • 张建卓1,万传旭*1,肖永惠2,陈策1,王涛1,郭昊1
作者信息 +

Influence of resistance characteristics of energy-absorbing components on impact resistance of hydraulic columns

  • ZHANG Jianzhuo1,WAN Chuanxu*1,XIAO Yonghui2,CHEN Ce1,WANG Tao1,GUO Hao1
Author information +
文章历史 +

摘要

巷道冲击地压是一种高应力煤岩突然释放能量的动力灾害,支护装备往往受到过载冲击而失效致灾。为提高巷道液压支架的吸能抗冲能力,本文构建顶板来压作用下立柱-吸能构件耦合冲击模型,揭示吸能构件与立柱耦合作用下吸能构件最优阻力模式,以液压立柱乳化液压力最大波动幅值、立柱缸筒应力峰值、吸能量为评价指标,分析单吸能构件、组合吸能构件阻力特性对立柱抗冲击性能的影响。结果表明,增阻模式是巷道液压支架吸能构件的最优阻力模式:在立柱底端安装增阻吸能构件,其吸能量相比安装恒阻吸能构件增加9.29%,且不增大缸筒应力峰值,同时,可以降低大能量冲击过程中硬撞击产生的冲击力;立柱上、下两端安装增阻吸能构件,相比上、下两端安装恒阻吸能构件,乳化液压力最大波动幅值降低9.79%,缸筒内壁应力峰值降低了13.83 MPa,吸能量增加5.65%。研究成果为巷道防冲液压支架吸能构件的设计提供了理论依据。

Abstract

Rock burst in roadway is a kind of dynamic disaster caused by sudden release of energy from high stress coal rock. Supporting equipment is often damaged by overload impact. In order to improve the energy absorption and impact resistance of the roadway hydraulic support, this paper constructs a coupling impact model of the column-energy absorbing component under the action of roof pressure, and reveals the optimal resistance mode of the energy absorbing component under the coupling effect of the energy absorbing component and the column. The maximum fluctuation amplitude of the emulsion pressure of the hydraulic column, the peak stress of the column cylinder and the energy absorption are used as evaluation indexes to analyze the influence of the resistance characteristics of the single energy absorbing component and the combined energy absorbing component on the impact resistance of the column. The results show that the resistance-increasing mode is the optimal resistance mode for the energy-absorbing components of the roadway hydraulic support. Compared with the constant resistance energy-absorbing component installed at the bottom of the column, the energy absorption of the resistance-increasing energy-absorbing component installed at the bottom of the column increases by 9.29 %, and does not increase the peak stress of the cylinder. At the same time, it can reduce the impact force generated by hard impact in the process of large energy impact ; compared with the constant resistance energy absorption components installed at the upper and lower ends of the column, the maximum fluctuation amplitude of the emulsion pressure is reduced by 9.79 %, the peak stress of the inner wall of the cylinder is reduced by 13.83 MPa, and the energy absorption is increased by 5.65 %. The research results provide a theoretical basis for the design of energy absorption components of roadway anti-scour hydraulic support.

关键词

吸能防冲立柱 / 吸能构件 / 阻力特性 / 耦合冲击 / 组合吸能

Key words

energy absorption anti-impact column / energy absorbing component / resistance characteristics / coupling impact; combined energy absorption

引用本文

导出引用
张建卓1, 万传旭1, 肖永惠2, 陈策1, 王涛1, 郭昊1. 吸能构件阻力特性对液压立柱抗冲击特性影响研究[J]. 振动与冲击, 2025, 44(4): 217-228
ZHANG Jianzhuo1, WAN Chuanxu1, XIAO Yonghui2, CHEN Ce1, WANG Tao1, GUO Hao1. Influence of resistance characteristics of energy-absorbing components on impact resistance of hydraulic columns[J]. Journal of Vibration and Shock, 2025, 44(4): 217-228

参考文献

[1]朱斯陶,姜福兴,刘金海等.我国煤矿整体失稳型冲击地压类型、发生机理及防治[J].煤炭学报,2020,45(11):3667-3677.
ZHU Sitao,JIANG Fuxing,LIU Jinhai,et al.Types,occurcenec mechanism and prevention of overall istability induced rockbursts in China coal mines[J].Journal of China Coal Society,2020,45(11):3667-3677.
[2]宋宇宁,徐晓辰,张文武.冲击作用下液压支架双级安全阀动态特性研究[J].兵器装备工程学报,2022,43(02):242-248+279.
SONG Yuning,XU Xiaochen,ZHANG Wenwu.Research on dynamic characteristics of two-stage safety valve of hydraulic support under impact loading[J]. Journal of Ordnance Equipment Engineering,2022,43(02):242-248+279.
[3]赵怀志,王晓东.液压支架大流量安全阀冲击特性影响因素仿真分析[J].液压与气动, 2022,46(02):131-137.
ZHAO Huaizhi, WANG Xiaodong. Simulation Analysis of Influencing Factors on Impact Characteristics of Large Flow Safety Valve for Hydraulic Support[J]. Chinese Hydraulics & Pneumatics, 2022,46(2):131-137.
[4]安栋,陈征,宋义敏等.冲击地压矿井巷道吸能防冲液压支架防冲效果研究[J].煤炭科学技术,2022,50(11):12-19.
AN Dong, CHEN Zheng, SONG Yimin, et al. Research on energy absorption characteristics and anti-bump effect of anti-bump hydraulic support in rockburst mine roadway[J]. Coal Science and Technology,2022,50(11) :12-19.
[5] Zhang Q , Li B , Zhang R . Optimization of Anti-Impact Energy Absorption Structure of Hydraulic Support[J]. Mechanika, 2022(4):28.
[6]VI Klishin,TM Tarasik. Stand Tests of Hydraulic Props in Dynamic Loads. Journal of Mining Science. 2001,37(1):77-84.
[7]潘一山,肖永惠,李国臻.巷道防冲液压支架研究及应用[J].煤炭学报,2020,45(01):90-99.DOI:10.13225/j.cnki.jccs.YG19.1762.
PAN Yishan, XIAO Yonghui, LI Guozhen. Roadway hydraulic support for rockburst prevention in coal mine and its application[J]. Journal of China CoalSociety,2020,45(1):90-99.
[8]潘一山,齐庆新,王爱文等.煤矿冲击地压巷道三级支护理论与技术[J].煤炭学报,2020,45(05):1585-1594.DOI:10.13225/j.cnki.jccs.DY20.0261.
PAN Yishan, QI Qingxin, WANG Aiwen, et al. Theory and technology of three levels support in bump-prone roadway [J].Journal of China Coal Society,2020,45(5):1585-1594.
[9]吴拥政,付玉凯,何杰等.深部冲击地压巷道“卸压-支护-防护”协同防控原理与技术[J].煤炭学报,2021,46(01):132-144.
WU Yongzheng, FU Yukai, HE Jie, et al. Principle and technology of “pressure relief-support-protection” collaborative prevention and control in deep rock burst roadway[J].Journal of China Coal Society,2021,46(1):132-144.
[10]Ma X, Pan Y S, Xiao Y H. Study on Application of the Mine Anti-Impact and Energy-Absorption Device[J]. Applied Mechanics and Materials. 2013,470:598–603.
[11]Baroutaji, A., Gilchrist, M. D., Smyth, D., et al. Analysis and optimization of sandwich tubes energy absorbers under lateral loading[J]. International Journal of Impact Engineering. 2015,82,74-88.
[12]肖晓春,朱恒,徐军,等.含泡沫铝填充多胞方管吸能立柱防冲特性数值研究[J].煤炭科学技术,2023,51(10):302-311. 
XIAO Xiaochun,ZHU Heng,XU Jun,et al. Num- erical study on anti-impact characteristics of energy absorbing column with multicellular square tube filled with aluminum foam[J]. Coal Science and Technology,2023,51(10):302-311.
[13]Pirmohammad, S., & Marzdashti, S. E. Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads[J]. Thin-Walled Structures. 2016,108,291-304.
[14]Tang, Z, Zuo, W B, Lv, J G, et al. Study on factors influencing mechanical properties of energy absorbers for hydraulic support in rockburst roadway[J].The International Journal of Advanced Manufacturing Technology,2023.
[15]Tang Z, Pan Y S, Zhu X J. Energy Absorption Numerical Analysis of Mine Impingement Thin-Walled Components with Different Configurations[J]. In Applied Mechanics and Materials. 2014,2572-2578.
[16]Khan, S., Shahiq, M., Iqbal, M. Z. Shock absorption capability of corrugated ring yield mount subjected to high impact loading[J]. Heliyon, 2023, 9(6).
[17]张建卓,刘欢,王洁.直纹管外翻式构件设计与吸能特性研究[J].振动与冲击,2020,39(09):49-56.
ZHANG Jianzhuo, LIU Huan, WANG Jie. Design and energy-absorbing properties of the everting components of straight corrugated tubes[J]. Journal of Vibration and Shock. 2020,39(09):49-56.
[18]杨巨文,唐治,何峰等.矿用扩径式吸能构件吸能防冲特性研究[J].振动与冲击,2015,34(08):134-138+143.
YANG Juwen, TANG Zhi, HE Feng, et al. Energy absorption and anti-impact properties of mine diameter-expanding energy absorption components[J]. Journal of Vibration and Shock. 2015,34(08):134-138+143.
[19]张建卓,张佳林.吸能型防冲立柱液体冲击问题研究[J].振动与冲击,2020,39(08):51-57.
ZHANG Jianzhuo, ZHANG Jialin. A study on liquid shock of energy-absorbing anti-impact hydraulic column[J]. Journal of Vibration and Shock. 2020,39(08):51-57.
[20]阚红元.圆筒形异种钢焊接连接元件边缘应力分析计算[J].石油化工设备技术,2007(04):4-6+10+4.
KAN Hongyuan. Stress Analysis Calculation for Edge of Welding Components of Cylindrical-Shaped Speical Steel[J]. Petrochemical Equipment Technology. 2007(04):4-6+10+4.
[21]李智慧,李玉龙,汤安民.受内压厚壁圆筒的塑性变形条件与脆断分析[J].应用力学学报,2020,37(04):1515-1520+1857.
LI Zhihui, LI Yulong, TANG Anmin. Investigation of plastic deformation and brittle fracture in a thick-walled cylinder subjected to internal pressure[J]. Chinese Journal of Applied Mechanics. 2020,37(04):1515-1520+1857.
[22]丁伯民,黄正林. 化工容器[M]. 北京:化学工业出版社工业装备与信息工程出版中心,2003.
[23]王春华,安达,韩冲等.冲击地压新型加肋板圆管式吸能防冲构件的仿真与试验[J].振动与冲击,2019,38(11):203-210+241.
WANG Chunhua, AN Da, HAN Chong, et al. Simulation and tests for new tubular type energy-absorbing and anti-impact members with stiffened plate under rock burst[J]. Journal of Vibration and Shock. 2019,38(11):203-210+241.
[24]中华人民共和国国家质量监督检验检疫总局.GB/T 25974.2-2010, 煤矿用液压支架 第2部分:立柱和千斤顶技术条件[S].北京:中国煤炭工业协会,2011.
[25]潘一山,高学鹏,王伟等.冲击地压矿井综采工作面两巷超前支护液压支架研究[J].煤炭科学技术,2021,49(06):1-12.
PAN Yishan,GAO Xuepeng,WANG Wei,et al.Research of hydraulic powered supports for entries’ advanced support in fully-mechanized working face of rock burst mine[J]. Coal Science and Technology, 2021,49(06):1-12.

PDF(2467 KB)

109

Accesses

0

Citation

Detail

段落导航
相关文章

/