基于WOA-IC优化神经网络的隧道爆破振动预测研究

高宇璠1, 傅洪贤2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 229-237.

PDF(1596 KB)
PDF(1596 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 229-237.
冲击与爆炸

基于WOA-IC优化神经网络的隧道爆破振动预测研究

  • 高宇璠1,傅洪贤*2
作者信息 +

Research on tunnel blasting vibration prediction based on WOA-IC optimized neural network

  • GAO Yufan1,FU Hongxian*2
Author information +
文章历史 +

摘要

为了提高爆破振动预测精度,提出了一种鲸鱼算法(WOA)和信息准则(IC)优化的人工神经网络(ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量化,建立了包括3个定量参数和10个定性参数的更完整的数据集。利用信息准则对模型复杂度的反馈,构建了一个提高模型泛化能力的双层优化结构,分析改进ANN模型的激活函数和训练算法最优组合,并引入鲸鱼算法优化模型初始权值和阈值的选取,降低模型输出结果的偏差和波动。对比分析WOA-IC-ANN模型与传统经验公式、ANN模型、IC-ANN模型、WOA-ANN模型预测结果的差异。研究表明:WOA-IC-ANN模型的预测结果与实际吻合更好,误差显著降低,具有较好的泛化能力。研究成果可用于隧道爆破工程的振动预测,并为类似工作提供借鉴和参考。

Abstract

In order to improve the accuracy of blasting vibration prediction, a whale algorithm (WOA) and information criterion (IC) optimized neural network (ANN) blasting vibration prediction model was proposed. Geological parameters were quantified according to a two-dimensional index variable method, and a more complete data set including 3 quantitative parameters and 10 qualitative parameters was constructed. Using the information criterion to feedback the complexity of the model, a two-layer optimization structure was established to improve the generalization ability of the model. The optimal combination of activation function and training algorithm for the improved ANN model was analyzed, and the whale optimization algorithm was introduced to optimize the selection of initial weights and thresholds of the model, reducing the deviation and fluctuation of the model output results. Differences between the WOA-IC-ANN model and traditional empirical formulas, ANN model, IC-ANN model, and WOA-ANN model were analyzed and compared. It was shown that the prediction results of the WOA-IC-ANN model are in better agreement with reality, with significantly reduced errors and good generalization ability; the research results can be used for vibration prediction in tunnel blasting engineering, and provide reference and guidance for similar work.

关键词

爆破振动 / 预测模型 / 信息准则(IC) / 鲸鱼算法(WOA) / 人工神经网络(ANN)

Key words

blasting vibration / prediction model / information guidelines (IC) / whale algorithm (WOA) / artificial neural network (ANN)

引用本文

导出引用
高宇璠1, 傅洪贤2. 基于WOA-IC优化神经网络的隧道爆破振动预测研究[J]. 振动与冲击, 2025, 44(4): 229-237
GAO Yufan1, FU Hongxian2. Research on tunnel blasting vibration prediction based on WOA-IC optimized neural network[J]. Journal of Vibration and Shock, 2025, 44(4): 229-237

参考文献

[1] 闵鹏,谢俊,申玉生,等.考虑自由面参数影响的地铁隧道爆破振速预测公式优化研究[J].振动与冲击,2023,42(21):245-253 +283.
MIN Peng, XIE Jun, SHEN Yu-sheng, et al. Optimization of prediction formula for blasting vibration velocity of subway tunnels considering effects of free surface parameters[J]. Journal of Vibration and Shock,2023,42(21):245-253+283.
[2] 宋战平,张艺多,郭德赛,等.邻近既有建(构)筑物隧道爆破方案评价及优化方法[J].土木与环境工程学报(中英文),2023, 45(01):14-24.
SONG Zhan-ping, ZHANG Yi-duo, GUO De-sai, et al. Evaluation and optimization method of tunnel blasting scheme for adjacent existing structures[J]. Journal of Civil and Environmental Engineering, 2023,45(01):14-24.
[3] 张帅,薛江龙,杨健康,等.基于HHT分析的大断面软岩隧道爆破振动控制效果研究[J].工程爆破,2023,29(06):158-166.
ZHANG Shuai, XUE Jiang-long, YANG Jian-kang, et al. Study on blasting vibration control effect of large section soft rock tunnel based on HHT analysis[J]. Engineering Blasting,2023,29(06): 158-166.
[4] 刘翔宇,龚敏,杨仁树,等.基于蒙特卡洛的电子雷管延期误差对隧道爆破振动影响研究[J].振动与冲击,2023,42(23):192-198.
LIU Xiang-yu, GONG Min, YANG Ren-shu. Effects of delay error of electronic detonator on tunnel blasting vibration based on Monte Carlo method[J]. Journal of Vibration and Shock,2023, 42(23):192-198.
[5] Kumar R ,Choudhury D ,Bhargava K .Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties[J].Journal of Rock Mechanics and Geotechnical Engineering,2016,8(03):341-349.
[6] Simangunsong G, Wahyudi S. Effect of bedding plane on prediction blast-induced ground vibration in open pit coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2015,79:1-8.
[7] Anderson DA, Ritter AP, Winzer SR, Reil JW. A method for site-specific prediction and control of ground vibration from blasting[C]. The 11th annual conference on explosives and blasting techniques, San Diego, 1985.
[8] Blair DP. Non-linear superposition models of blast vibration[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(2):235-247.
[9] YANG Rui-lin, SCOVIRA DS. A model for near and far-field blast vibration based on multiple seed waveforms and transfer functions[C]//In 36th Conference explosives and blasting technique, Orlando, Florida, 2010.
[10] Jhon SC. A different methodology to control and predict ground vibrations from mine blasting[J]. Canadian Geotechnical Journal, 2019, 56(7): 929-941.
[11] Blair D P. Approximate models of blast vibration in non-isotropic rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 104245.
[12] 顾清华,江松,李学现,等.人工智能背景下采矿系统工程发展现状与展望[J].金属矿山,2022(05):10-25.
GU Qing-hua, JIANG Song, LI Xue-xian, et al. Development status and prospect of mining system engineering under the background of artificial intelligence[J]. Metal Mine, 2022(05):10-25.
[13] 徐国权,王鑫瑀.基于神经网络算法的爆破振动预测模型开发[J].有色金属工程,2023,13(05):94-102.
XU Guo-quan, WANG Xin-yu. Developing a blasting vibration prediction model based on neural network algorithm[J]. Nonferrous Metals Engineering,2023,13(05):94-102.
[14] MCCULLOH W S, PITTS W. A logical Calculus of Ideas Immanent in Nervous Activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5: 115-133.
[15] 张西良,焦灏恺,李二宝.基于迁移学习算法的深部爆破振动速度预测[J].中国安全科学学报,2023,33(06):64-72.
ZHANG Xi-liang, JIAO Hao-kai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning[J]. China Safety Science Journal, 2023,33(06):64-72.
[16] 温廷新,陈晓宇,刘天宇,等.基于优化IGA-ELM模型的爆破振动特征参量预测研究[J].中国安全科学学报,2017,27(11): 37-42. 
WEN Ting-xin, CHEN Xiao-yu, LIU Tian-yu, et al. Predicting research on characteristic parameters of blast-induced vibration based on optimized IGA-ELM model[J]. China Safety Science Journal, 2017,27(11):37-42.
[17] 范勇,裴勇,杨广栋,等.基于改进PSO-BP神经网络的爆破振动速度峰值预测[J].振动与冲击, 2022,41(16):194-203+302.
FAN Yong, PEI Yong, YANG Guang-dong, et al. Prediction of blasting vibration velocity peak based on an improved PSO-BP neural network[J]. Journal of Vibration and Shock, 2022,41(16):194-203+302.
[18] 梅比,汪旭光,杨仁树.基于Adaboost-SVM组合算法的爆破振动强度预测研究[J].振动与冲击,2019,38(18):231-235.
MEI Bi, WANG Xu-guang, YANG Ren-shu. Prediction of blasting vibration intensity based on Adaboost-SVM combination algorithm[J]. Journal of Vibration and Shock, 2019,38(18): 231-235.
[19] 马力,李天翔,来兴平,等.基于Fourier级数的露天矿抛掷爆破效果GA-LSSVM预测[J].煤炭学报,2022,47(12):4455- 4465.
MA Li, LI Tian-xiang, LAI Xing-ping, et al. GA-LSSVM prediction of blasting casting effect in open pit mine based on Fourier series[J]. Journal of China Coal Society,2022,47(12): 4455-4465.
[20] Nguyen H, Bui XN, Tran QH, et al. A new soft computing model for estimating and controlling blast- produced ground vibration based on hierarchical K-means clustering and cubist algorithms[J]. Applied Soft Computing, 2019, 77: 376-386.
[21] Nguyen H, Bui X, Topal E. Enhancing predictions of blast-induced ground vibration in open-pit mines: Comparing swarm-based optimization algorithms to optimize self-organizing neural networks[J]. International Journal of Coal Geology, 2023,275:104294.
[22] 莫宏毅,徐振洋,刘鑫,等.基于SSA-VMD的爆破振动信号趋势项去除方法[J].振动与冲击,2023,42(11):304-312+330.
MO Hong-yi, XU Zhen-yang, LIU Xin, et al. Trend removal method of blasting vibration signal based on SSA-VMD[J]. Journal of Vibration and Shock, 2023,42(11):304-312+330.
[23] 雷明锋,张运波,秦桂芳,等.山岭隧道爆破效果神经网络评价模型及爆破参数优化决策方法研究[J].现代隧道技术,2023, 60(02):54-61.
LEI Ming-feng, ZHANG Yun-bo, QIN Gui-fang, et al. A study on neural network evaluation model of blasting effect in mountain tunnel and decision-making method for blasting parameter optimization[J]. Modern Tunneling Technology, 2023,60(02): 54-61.
[24] Rezaei M, Monjezi M, Matinpoor F, et al. Simulation of induced flyrock due to open-pit blasting using the PCA-CART hybrid modeling[J]. Simulation Modelling Practice and Theory, 2023, 129: 102844.
[25] 金长宇,于佳强,王强,等.基于集成学习CatBoost优化模型的爆堆大块率预测[J].东北大学学报(自然科学版),2023,44(12): 1743-1750.
JIN Chang-yu, YU Jia-qiang, WANG Qiang, et al. Prediction of blasting fragment large block percentage ratio based on ensemble learning CatBoost model[J]. Journal of Northeastern University (Natural Science),2023,44(12): 1743- 1750.
[26] Jang H, Topal E. A review of soft computing technology applications in several mining problems[J]. Applied Soft Computing, 2014,22:638-651.
[27] Kutner M H, Nachtsheim C J, Neter J, Li W. Applied linear statistical models[M]. McGraw-Hill Irwin, 2005.
[28] Seyedali Mirjalili, Andrew Lewis. The Whale Optimization Algorithm[J]. Advances in Engineering Software, 2016,95: 51-67.

PDF(1596 KB)

Accesses

Citation

Detail

段落导航
相关文章

/