超长隔震结构混凝土干缩应变分离与温缩变形预测

杜永峰1, 2, 张超1, 李虎1, 王光环1, 李超3, 马振和3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 253-264.

PDF(2638 KB)
PDF(2638 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 253-264.
地震科学与结构抗震

超长隔震结构混凝土干缩应变分离与温缩变形预测

  • 杜永峰1,2,张超*1,李虎1,王光环1,李超3,马振和3
作者信息 +

Concrete drying shrinkage strainseparation and thermal shrinkage deformation prediction in very-long isolated structures

  • DU Yongfeng1,2, ZHANG Chao*1, LI Hu1, WANG Guanghuan1, LI Chao3, MA Zhenhe3
Author information +
文章历史 +

摘要

隔震层温缩变形是评估超长隔震结构全过程性能状态的重要参数之一,为充分掌握隔震层温缩变形规律,并实现对隔震层温缩变形预测,首先建立了隔震层温缩位移一维等直梁比拟模型,给出了隔震层水平温缩位移的求解方法。其次提出了温缩位移系数,通过验证该系数计算的准确性,以保证综合温差估计的合理性;提出了隔震层均方根温度,以较为精准地估计隔震层温度;在此基础上,给出了隔震层混凝土干缩应变分离与温缩变形预测方法。最后以严寒地区某超长复杂隔震结构为研究对象,建立了隔震层均方根温度相关性模型,为观测时间点隔震层温度预测提供依据;分离得到了隔震层各测点混凝土干缩应变,利用双指数函数拟合得到了混凝土干缩预测模型,为预测混凝土各龄期下干缩应变提供参考;进而对隔震层温缩变形进行了预测,分析结果表明:采用隔震层均方根温度相关性模型和双指数干缩预测模型,能够较为精准地预测隔震层各测点的合成向温缩变形,从而为超长隔震结构全过程的性能评估奠定基础。

Abstract

The thermal shrinkage deformation of the isolation layer is one of the important parameters to evaluate the whole process performance state of very-long isolated structures. In order to fully grasp the thermal shrinkage deformation law of the isolation layer and realize the prediction of thermal shrinkage deformation of the isolation layer, firstly, a one-dimensional uniform straight beam analogy model of thermal shrinkage displacement of the isolation layer is established, and a solution method of horizontal thermal shrinkage displacement of the isolation layer is given. Secondly, the thermal shrinkage displacement coefficient is proposed, and the accuracy of the coefficient calculation is verified to ensure the rationality of the comprehensive temperature difference estimation. The root mean square temperature of the isolation layer is proposed to estimate the temperature of the isolation layer more accurately. On this basis, a method for drying shrinkage strain separation and thermal shrinkage deformation prediction of the isolation layer concrete is given. Finally, taking a very-long complex isolated structure in severe cold area as the research object, the root mean square temperature correlation model of the isolation layer is established, which provides a basis for predicting the temperature of the isolation layer at the observation time point. The concrete drying shrinkage strain at each measuring point of the isolation layer is separated, and the concrete drying shrinkage prediction model is fitted by double exponential function, which provides a reference for predicting the concrete drying shrinkage strain at each age. Furthermore, the thermal shrinkage deformation of the isolation layer is predicted. The analysis results show that the synthetic thermal shrinkage deformation of each monitoring point of the isolation layer can be accurately predicted by using the root mean square temperature correlation model and the double exponential concrete drying shrinkage prediction model, thus laying a foundation for the performance evaluation of the whole process of very-long isolated structures.

关键词

超长隔震结构 / 温缩变形 / 均方根温度 / 干缩应变 / 预测

Key words

very-long isolated structures / thermal shrinkage deformation / root mean square temperature / drying shrinkage strain / prediction

引用本文

导出引用
杜永峰1, 2, 张超1, 李虎1, 王光环1, 李超3, 马振和3. 超长隔震结构混凝土干缩应变分离与温缩变形预测[J]. 振动与冲击, 2025, 44(4): 253-264
DU Yongfeng1, 2, ZHANG Chao1, LI Hu1, WANG Guanghuan1, LI Chao3, MA Zhenhe3. Concrete drying shrinkage strainseparation and thermal shrinkage deformation prediction in very-long isolated structures[J]. Journal of Vibration and Shock, 2025, 44(4): 253-264

参考文献

[1] 丁阳, 董宇乔, 石运东, 等. 大跨空间结构隔震研究进展[J].东南大学学报(自然科学版), 2023, 53(05): 857-868.
DING Yang, DONG Yuqiao, SHI Yundong, et al. State-of-the-art on seismic isolation of long-span spatial structures[J]. Journal of Southeast University (Natural Science), 2023, 53(05): 857-868.
[2] 卜龙瑰, 吴中群, 束伟农, 等. 海口美兰国际机场T2航站楼跨层隔震设计研究[J]. 建筑结构, 2018, 48(20): 79-82.
BU Longgui, WU Zhongqun, SHU Weinong, et al. Study on cross-layer isolation design on T2 terminal of Haikou Meilan International Airport[J]. Building Structure, 2018, 48(20): 79-82.
[3] 束伟农, 朱忠义, 卜龙瑰, 等. 机场航站楼结构隔震设计研究与应用[J].建筑结构, 2019, 49(18): 5-12.
SHU Weinong, ZHU Zhongyi, BU Longgui, et al.Research and application of seismic isolation design of airport terminal structure[J]. Building Structure, 2019, 49(18): 5-12.
[4] 束伟农, 朱忠义, 张琳, 等. 北京新机场航站楼隔震设计与探讨[J]. 建筑结构, 2017, 47(18): 6-9.
SHU Weinong, ZHU Zhongyi, ZHANG Lin, et al. Seismically isolated design on terminal building of Beijing New Airport[J]. Building Structure, 2017, 47(18): 6-9.
[5] 王瑞峰, 周健, 杨笑天, 等. 乌鲁木齐地窝堡国际机场换乘中心隔震设计[J]. 建筑结构, 2020, 50(18): 96-100+95.
WANG Ruifeng, ZHOU Jian, YANG Xiaotian, et al. Seismic isolation design of the transfer center of Urumqi Diwopu International Airport[J]. Building Structure, 2020, 50(18): 96-100+95.
[6] 李靖, 曹莉, 扈鹏, 等. 西安咸阳国际机场东航站楼隔震设计[J]. 建筑结构, 2022, 52(11): 15-21.
LI Jing, CAO Li, HU Peng, et al. Seismic isolation design on east terminal building of Xi′an Xianyang International Airport[J]. Building Structure, 2022, 52(11): 15-21.
[7] 潘毅, 宋佳雨, 杨龙, 等. 铁路站房减隔震技术应用与研究现状评述[J]. 中国铁道科学, 2022, 43(04): 186-197.
PAN Yi, SONG Jiayu, YANG Long, et al. Review on seismic isolation technology application and research status in railway station buildings[J]. China Railway Science, 2022, 43(04): 186-197.
[8] 杜永峰, 郑文智, 李万润, 等. 基础隔震结构健康监测系统的设计与实现(Ⅱ): 系统实现[J]. 地震工程学报, 2016, 38(03): 344-352.
DU Yongfeng, ZHENG Wenzhi, LI Wanrun, et al. Design and implementation of health monitoring system for base-isolated structure(II): system implementation[J]. China Earthquake Engineering Journal, 2016, 38(03): 344-352.
[9] 杜永峰, 赵丽洁, 张韬, 等. 超长复杂隔震结构施工力学及全过程监测研究[J]. 工程力学, 2015, 32(07): 1-10+25.
DU Yongfeng, ZHAO Lijie, ZHANG Tao, et al. Study on construction mechanics of long complicated isolated structures and life-cycle monitoring[J]. Engineering Mechanics, 2015, 32(07): 1-10+25.
[10] 杜永峰, 郑文智, 李万润, 等. 超长复杂基础隔震结构静动力特性温度相关性研究[J]. 工程力学, 2017, 34(7): 69-78.
DU Yongfeng, ZHENG Wenzhi, LI Wanrun, et al. Study on the dependency of static and dynamic characteristics with environmental temperature for long irregular base-isolated structures[J]. Engineering Mechanics, 2017, 34(7): 69-78.
[11] 杜永峰, 张超, 王光环, 等. 基于环境温度概率模型的超长隔震结构温缩变形控制研究[J]. 土木工程学报, 2023, 56(2): 58-68+91.
DU Yongfeng, ZHANG Chao, WANG Guanghuan, et al. Thermal shrinkage deformation control of very-long isolated structures based on the probabilistic model of ambient temperature[J]. China Civil Engineering Journal, 2023, 56(2): 58-68+91.
[12] 范重, 刘学林, 刘涛, 等. 济南遥墙机场T2航站楼超长结构温度及行波效应研究[J]. 建筑结构学报, 2023, 44(09): 1-13.
FAN Zhong, LIU Xuelin, LIU Tao, et al. Study on temperature and traveling wave effect of super-long structure of Terminal 2 of Jinan Yaoqiang Airport[J]. Journal of Building Structures, 2023, 44(09): 1-13.
[13] 陈国良, 林训根, 岳青, 等.基于时间序列分析的桥梁长期挠度分离与预测[J]. 同济大学学报(自然科学版), 2016, 44(06): 962-968.
CHEN Guoliang, LIN Xungen, YUE Qing, et al. Real-time seperation of temperature effect on dynamic strain monitoring and moving load identification of bridge structure[J]. Journal of Tongji University (Natural Science), 2016, 44(06): 962-968.
[14] 杨春, 李鹏麟, 熊帅, 等. 基于BIM和神经网络的大跨度钢屋盖监测数据解析[J]. 华南理工大学学报(自然科学版), 2020, 48(09): 10-19.
YANG Chun, LI Penglin, XIONG Shuai, et al. Analysis of monitoring data of a long-span steel roof based on BIM and BP neural network[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(09): 10-19.
[15] 杨娜, 李天昊, 赵恭民. 基于应变监测数据预测值的藏式古建筑木结构健康状态评估[J]. 工程力学, 2023, 40(02): 112-123+134.
YANG Na, LI Tianhao, ZHAO Gongmin. Health assessment of tibetan ancient wood structures based on the predicted value of strain monitoring data[J]. Engineering Mechanics, 2023, 40(02): 112-123+134.
[16] 李双江, 辛景舟, 付雷, 等. 基于VMD-KLD的桥梁挠度监测数据温度效应分离方法[J].振动与冲击, 2022, 41(05): 105-113.
LI Shuangjiang, XIN Jingzhou, FU Lei, et al. Temperature effect separation method of bridge deflection monitoring data based on VMD-KLD[J]. Journal of Vibration and Shock, 2022, 41(05): 105-113.
[17] GOULET J-A, KOO K. Empirical validation of bayesian dynamic linear models in the context of structural health monitoring[J]. Journal of Bridge Engineering, 2018, 23(2): 05017017.
[18] HEDEGAARD B D, FRENCH C E W, Shield C K. Time-dependent monitoring and modeling of I-35W St. anthony falls bridge. I: analysis of monitoring data[J]. Journal of Bridge Engineering, 2017, 22(7): 04017025.
[19] KROMANIS R, KRIPAKARAN P. Performance of signal processing techniques for anomaly detection using a temperature-based measurement interpretation approach[J]. Journal of Civil Structural Health Monitoring, 2021, 11(1).
[20] 王铁梦. 工程结构裂缝控制[M]. 第2版. 北京:中国建筑工业出版社, 2017.
[21] 杜永峰, 李向雄, 张超, 等. 基于计算机视觉的复杂隔震结构支座变形监测及分析[J]. 工业建筑, 2022, 52(10): 46-52.
DU Yongfeng, LI Xiangxiong, ZHANG Chao, et al. Monitoring and analysis of support deformation of complex seismic isolation structures based on computer vision[J]. Industrial Construction, 2022, 52(10): 46-52.
[22] 李慧, 谢文清, 杜永峰, 等. 某超长隔震结构在温度及收缩作用下的变形研究[J]. 工程抗震与加固改造, 2013, 35(01): 40-44.
LI Hui, XIE Wenqing, DU Yongfeng, et al. Study on the deformation of a ultra-long base isolated structure under temperature and shrinkage[J]. Earthquake Resistant Engineering and Retrofitting, 2013, 35(01): 40-44.
[23] 孙雅琼, 赵作周. 桥梁结构动应变监测的温度效应实时分离与动荷载识别[J]. 工程力学, 2019, 36(02): 186-194.
SUN Yaqiong, ZHAO Zuozhou. Real-time seperation of temperature effect on dynamic strain monitoring and moving load identification of bridge structure[J]. Engineering Mechanics, 2019, 36(02): 186-194.
[24] 范重. 国家体育场鸟巢结构设计[M]. 北京: 中国建筑工业出版社, 2010.
[25]中华人民共和国交通运输部发布. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG3362-2018[S]. 北京: 人民交通出版社股份有限公司, 2018.
[26] 中华人民共和国住房和城乡建设部.混凝土结构设计规范: GB50010-2010[S]. 北京: 中国建筑工业出版社, 2010.
[27]  中华人民共和国住房和城乡建设部.大体积混凝土施工标准: GB50496-2018[S]. 北京: 中国建筑工业出版社, 2018.
[28] 吴林妹, 史才军, 张祖华, 等. 钢纤维对超高性能混凝土干燥收缩的影响[J]. 材料导报, 2017, 31(23): 58-65.
WU Linmei, SHI Caijun, ZHANG Zuhua, et al. Effects of steel fiber on drying shrinkage of ultra high performance concrete[J]. Materials Reports, 2017, 31(23): 58-65.

PDF(2638 KB)

165

Accesses

0

Citation

Detail

段落导航
相关文章

/