空簧联通状态对虚拟轨道车辆车体结构服役安全性影响研究

张弛1, 2, 王超1, 朱涛1, 张卫华1, 肖守讷1, 阳光武1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 28-39.

PDF(4405 KB)
PDF(4405 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 28-39.
振动理论与交叉研究

空簧联通状态对虚拟轨道车辆车体结构服役安全性影响研究

  • 张弛1,2,王超*1,朱涛1,张卫华1,肖守讷1,阳光武1
作者信息 +

Study of the influence of the air-spring coupling state on the service safety of virtual vehicle body structure

  • ZHANG Chi1,2,WANG Chao*1,ZHU Tao1,ZHANG Weihua1,XIAO Shoune1,YANG Guangwu1
Author information +
文章历史 +

摘要

虚拟轨道车辆作为一种新制式的城市轨道交通体系,运行条件下的虚拟轨道车辆服役状态评估显得尤为重要。本文首先基于有限元仿真和空簧联通前后状态的线路测试获取车体薄弱位置及加速度响应;然后,通过车辆悬挂系统的加速度传递特性构建车体加速度等效传递系数,开展加速度-应变损伤评估方法研究;最后,结合断裂力学失效评估准则对薄弱位置进行结构完整性评定。通过将服役加速度和应变损伤作为输入,评估了空簧联通状态对虚拟轨道车辆车体的服役安全性。结果表明,车体结构薄弱位置主要分布在车体二位端纵梁焊接位置。车辆启动、制动工况对整体结构损伤影响较大,占整体站间纵向损伤的50%左右;过桥工况对垂向损伤影响较大,占整体站间纵向损伤的60%左右,空簧导通增强了车体结构平稳性,车辆服役环境载荷满足寿命要求,运行平稳性和舒适性良好。研究方法可为虚拟轨道车辆的设计及服役安全性评估提供指导。

Abstract

The service state assessment of virtual rail vehicles under operating conditions is particularly important as a new type of urban rail transportation system. Firstly, this study obtains the weak position and acceleration response of the vehicle body based on the finite element simulation and the line test before and after the air-spring connection state. Then, the acceleration equivalent transfer coefficient of the vehicle body is constructed through the acceleration transfer characteristic of the vehicle suspension system to carry out the research on the acceleration-strain damage assessment method. The service safety of the virtual railcar body in the air-spring coupling state is evaluated by taking the service acceleration and strain damage as inputs. The results show that the structural weaknesses of the vehicle body are mainly distributed in the welded positions of the longitudinal beams at the two ends of the vehicle body. When the vehicle starts and brakes, the overall structural damage is more influential, accounting for about 50% of the overall longitudinal damage between stations. The bridge crossing condition has a greater impact on the vertical damage, accounting for about 60% of the overall longitudinal damage between stations. The air spring conduction enhances the smoothness of the vehicle body structure, and the vehicle service environment load meets the life requirements, and the smoothness and comfort of the operation is good. The research method can provide guidance for the design and service safety assessment of virtual rail vehicles.

关键词

虚拟轨道车辆 / 车体结构 / 加速度特性 / 疲劳损伤 / 服役安全性

Key words

Virtual rail vehicle / Body structure / Acceleration characteristics / Fatigue damage / Service safety

引用本文

导出引用
张弛1, 2, 王超1, 朱涛1, 张卫华1, 肖守讷1, 阳光武1. 空簧联通状态对虚拟轨道车辆车体结构服役安全性影响研究[J]. 振动与冲击, 2025, 44(4): 28-39
ZHANG Chi1, 2, WANG Chao1, ZHU Tao1, ZHANG Weihua1, XIAO Shoune1, YANG Guangwu1. Study of the influence of the air-spring coupling state on the service safety of virtual vehicle body structure[J]. Journal of Vibration and Shock, 2025, 44(4): 28-39

参考文献

[1] 中国城市轨道交通协会. 2022年中国内地城轨交通线路概况[EB/OL]. (2023-01-03)[2023-2-19]. https://www.camet.org.cn/xyxw/11484.
[2] 黄强,袁希文,胡云卿等.智轨电车虚拟联挂控制系统关键技术研究[J].控制与信息技术,2023(03):1-10.
Huang Qiang, Yuan Xiwen, Hu Yunqing, et al Research on Key Technologies of Virtual Coupling Control System for Autonomous-rail Rapid Tram[J]. Control and Information Technology, 2023(03):11-10.
[3] 侯凯文. 基于虚拟轨道的自动驾驶车辆管控方法和系统研究[D].北京交通大学,2021.
Hou Kaiwen. Research on Method and System of Management and Control forAutonomous Vehicles Based on Virtual Track[D]. Beijing Jiaotong University, 2021.
[4] 柴岗. 智轨车体结构仿真分析及轻量化研究[D].西南交通大学,2022.
Chai Gang. RESEACHON THE FINITE ELEMENT ANALYSIS AND LIGHTWEIGHT OPTIMIZATION DESIGN OF THEAUTONOMOUS-RAIL RAPID TRANSIT BODY Southwest Jiaotong University,2022
[5] 银应时,杨勇,刘彪等.智轨电车轻量化设计[J].技术与市场,2021,28(01):1-3.
Yin Yingshi,Yang Yong,Liu Biao, et al. Lightweihgt design for ART[J]. Technology and Market,2021,28(01):1-3.
[6] 赵昀陇,池茂儒,贾鹏等.虚拟轨道车辆二系垂向刚度和阻尼对车辆平稳性和可控性的影响分析[J].铁道机车车辆,2021,41(04):21-27.
ZhaoJunlong,Chi Maoru, Jia Peng,et al. Investigation on nfluences of Secondary Vertical Stifness and Damping on Stability and Controllability for Virtual Orbit Vehicle. Railway Locomotive & Car, 2021,41(04):21-27.
[7] Zhang D, Yang C, Zhang W, et al. A novel tracking control method for the distributed-drive and active-steering articulated virtual rail train[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2022, 236(2): 418-440.
[8] Lucet E, Micaelli A. Stabilization of a road-train of articulated vehicles[J]. Robotics and Autonomous Systems, 2019, 114: 106-123.
[9] Wu X, Gao A, Wen Z, et al. Online estimation of fatigue damage of railway bogie frame based on axle box accelerations[J]. Vehicle System Dynamics, 2023, 61(1): 286-308.
[10] Donzella G, Danesi A, Mazzù A, et al. Application of the Failure Assessment Diagram approach for contact fatigue damage evaluation in railway wheel steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(8): 2087-2100.
[11] Dumitriu M, Stănică D I. Study on the evaluation methods of the vertical ride comfort of railway vehicle—Mean comfort method and sperling’s method[J]. Applied Sciences, 2021, 11(9): 3953.
[12] Kim Y S, Lim T K, Park S H, et al. Dynamic model for ride comfort evaluations of the rubber-tired light rail vehicle[J]. Vehicle System Dynamics, 2008, 46(11): 1061-1082.
[13] Mendia-Garcia I, Gil-Negrete N, Nieto F J, et al. Analysis of the axial and transversal stiffness of an air spring suspension of a railway vehicle: mathematical modelling and experiments[J]. International Journal of Rail Transportation, 2022: 1-20.
[14] 万明磊. 基于ANSYS Workbench的电动城市客车车架轻量化研究[D].青岛大学,2015.
Wan Minglei. Frame lightweighting study for electric city buses based on ANSYS Workbench[D].Qingdao University. 2015.
[15] 魏宁波. 基于ANSYS的全承载式客车车身结构有限元分析[D].长安大学,2011.
Wei Wanbo.The Finite Element ofAnalysis of Integrated Coach Body Based on ANSYS[D].Chang’an University.2011.
[16] Zheng G, Liao Y, Chen B, et al. Multi-axial Load Spectrum Extrapolation Method for Fatigue Durability of Special Vehicles Based on Extreme Value Theory[J]. International Journal of Fatigue, 2023: 108014. 
[17] Francisco, A. S., T. M. W. Ouverney, and L. P. Moreira. "A comparison of the structural integrity of steam generator tubes based on deterministic and probabilistic crack acceptance criteria." Journal of the Brazilian Society of Mechanical Sciences and Engineering 44.3 (2022): 74.
[18] ZARGARZADEH P,CHAHARDEHI A,BRENNAN F,et al. Development of a failure assessment diagram based method for engineering criticality assessment of CO2 transportation pipelines[J].Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering2013,227 (2): 140-145.
[19] WU K,ZHANG D,FENG Q S , et al. "Improvement of fracture assessment method for pipe girth weld based on failure assessment diagram." International Journal of Pressure Vessels and Piping 204 (2023): 104950.
[20] ZHU J C ,MADIA M ,SCHURIG M ,et al. "Burst speed assessment of aero-engine turbine disk based on failure assessment diagram and global stability criterion." Engineering Fracture Mechanics 277 (2023): 109005.
[21] 赵仕伦. 海洋平台疲劳裂纹扩展评估技术研究[D].华南理工大学,2019.
Zhao Shihua. Research on Fatigue Crack Growth Assessment techniqueof Offshore Platforms[D]. South China University Of Technology,2019.

PDF(4405 KB)

Accesses

Citation

Detail

段落导航
相关文章

/