装配式风电混塔胶粘拼缝的内聚力本构模型及塔筒承载力研究

黄赐荣1, 2, 张栋梁1, 2, 付坤1, 2, 李天昊1, 2, 何澜1, 2, 章家炜1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 71-81.

PDF(2718 KB)
PDF(2718 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 71-81.
振动理论与交叉研究

装配式风电混塔胶粘拼缝的内聚力本构模型及塔筒承载力研究

  • 黄赐荣*1,2,张栋梁1,2,付坤1,2,李天昊1,2,何澜1,2,章家炜1,2
作者信息 +

Research on cohesive zone constitutive model of adhesive joint in prefabricated wind turbine hybrid tower and the bearing capacity of tower

  • HUANG Cirong*1,2,ZHANG Dongliang1,2,FU Kun1,2,LI Tianhao1,2,HE Lan1,2,ZHANG Jiawei1,2
Author information +
文章历史 +

摘要

为了探究装配式风电混塔胶粘拼缝的粘结性能以及塔筒整体的承载力,本文开展了混凝土-结构胶粘结界面的法向拉伸和切向剪切试验。针对混凝土粘结界面位置的裂纹开展以及破坏模式进行了详细考察,明确了粘结界面的法向以及切向的内聚力本构模型。基于试验得到的内聚力本构模型建立了6节段的装配式风电混塔简化模型,开展了装配式塔筒在纯扭及弯扭荷载工况下的承载能力研究,探究了竖缝结构胶对于装配式混塔承载力的影响。研究表明:混凝土-结构胶-混凝土粘结试件的剪切破坏模式以粘结界面破坏为主,抗剪性能会弱于混凝土本身;而法向拉伸破坏模式以混凝土基材破坏为主,抗拉性能会强于混凝土本身;通过数值模拟计算结果发现,相比于摩擦接触模型,竖缝内聚力CZM模型的抗扭承载能力有显著提升,但扭矩持续加载导致竖缝内聚力单元破坏后,其抗扭承载力和摩擦接触模型相近。

Abstract

In order to investigate the bonding performance of adhesive joints in prefabricated wind turbine hybrid towers and the overall bearing capacity of the tower, this paper conducted normal tensile and tangential shear experiments on the concrete-structural adhesive bonding interface. A detailed investigation was conducted on the crack propagation and failure mode at the bonding interface of concrete, and the normal and tangential cohesive zone constitutive models of the bonding interface were clarified. A simplified model of a 6-segments prefabricated wind turbine hybrid tower was established based on the cohesive constitutive zone model obtained from experiments, the bearing capacity of prefabricated towers under pure torsion and bending-torsion load cases was studied, the influence of vertical joint structural adhesive on the bearing capacity of prefabricated hybrid tower was explored. The test results show that the shear failure mode of concrete-adhesive-concrete specimen is mainly the bonding interface failure, and the shear resistance performance will be weaker than that of the concrete itself, and the shear resistance will be weaker than the concrete itself. the tensile failure mode of concrete-adhesive-concrete specimen is mainly the failure of the concrete itself, and the shear resistance performance will be stronger than that of the concrete itself. Through numerical simulation calculations, it was found that compared to the friction contact model, the CZM model for vertical adhesive joints has significantly improved its torsional bearing capacity. But after the continuous loading of torque caused the failure of the vertical adhesive joints, its torsional bearing capacity remained the same as the friction contact model. 

关键词

陆上风电 / 装配式 / 混塔 / 胶粘拼缝 / 内聚力模型 / 数学本构模型 / 抗扭承载力

Key words

Onshore wind power / Prefabricated / Hybrid tower / adhesive joint / Cohesive zone model / Mathematical constitutive model / Torsional bearing capacity

引用本文

导出引用
黄赐荣1, 2, 张栋梁1, 2, 付坤1, 2, 李天昊1, 2, 何澜1, 2, 章家炜1, 2. 装配式风电混塔胶粘拼缝的内聚力本构模型及塔筒承载力研究[J]. 振动与冲击, 2025, 44(4): 71-81
HUANG Cirong1, 2, ZHANG Dongliang1, 2, FU Kun1, 2, LI Tianhao1, 2, HE Lan1, 2, ZHANG Jiawei1, 2. Research on cohesive zone constitutive model of adhesive joint in prefabricated wind turbine hybrid tower and the bearing capacity of tower[J]. Journal of Vibration and Shock, 2025, 44(4): 71-81

参考文献

[1]  吴明明. 干连接预应力预制混凝土风电塔筒结构抗震性能研究[D]. 沈阳:沈阳建筑大学, 2021. (Wu Mingming. Seismic performance of dry-connected prestressed precast concrete wind turbine tower (WTT) structures[D]. Shenyang: Shenyang Jianzhu University, 2021 (in Chinese)) 
[2]  张栋梁, 汤群益, 李天昊等. 风载和地震波联合作用下风电机组钢混组合式塔架响应控制研究[J]. 振动与冲击, 2022, 41(23): 190-200. (Zhang Dongliang, Tang Qunyi, Li Tianhao, Fu Kun. Response control of steel-concrete composite tower of wind turbine under combinedaction of wind load and seismic wave[J]. Journal of vibration and shock, 2022, 41(23): 190-200 (in Chinese))
[3]  谢冰冰, 褚景春, 袁凌等. 风电机组装配式超高钢混塔筒刚度鲁棒性分析[J].可再生能源, 2022, 40(02): 196-202. (Xie Bingbing, Chu Jingchun, Yuan Ling, et al. Stiffness robustness analysis of ultra-high steel concrete prefabricated tower with wind turbine[J]. Renewable Energy Resources, 2022, 40(02): 196-202 (in Chinese))
[4]  Chen J, Li J, He X. Design optimization of steel–concrete hybrid wind turbine tower based on improved genetic algorithm[J]. The Structural Design of Tall and Special Buildings, 2020, 29(10): e1741.
[5]  Dongliang Zhang , Hom Bahadur Bhattarai, Fei Wang, et al. Dynamic characteristics of segmental assembled HH120 wind turbine tower[J]. Engineering Structures, 2024, (303): 117438. 
[6]  帅富文. 风电机组混凝土结构塔筒竖向灌浆接缝的受剪承载性能与计算方法研究[D]. 重庆: 重庆大学, 2022. (Shuai Fuwen. Research on the shear bearing performance and calculation method of vertical grouting joints of concrete tower of wind turbine structure[D]. Chongqing: Chongqing University, 2022 (in Chinese))
[7]  张学森, 吴香国, 李丹等. 额定风速下装配式UHPC风电塔筒静力与疲劳性能[J]. 可再生能源, 2022, 40(08): 1066-1072. (Zhang Xuesen, Wu Xiangguo, Li Dan, et al. Static and fatigue performance of assembled UHPC wind tower under rated wind speed[J]. Renewable Energy Resources, 2022, 40(08): 1066-1072 (in Chinese))
[8]  Huang X, Li B, Zhou X H, et al. Geometric optimisation analysis of Steel–Concrete hybrid wind turbine towers[J]. Structures, 2022, 35: 1125-1137.
[9]  潘荣. 环氧结构胶的耐老化性能及改性研究[D]. 长沙:湖南大学, 2008. (Pan Rong. The Research on the Aging Resistant Performance and Improvement of Epoxy Structural Adhesive[D]. Changsha: Hunan University, 2008 (in Chinese))
[10] 李媛. 环氧树脂结构胶的改性及粘接性能研究[D]. 郑州: 郑州大学, 2017. (Liyuan. Research on modification and adhesion properties of epoxy resin adhesive[D]. Zhengzhou: Zhengzhou University, 2017 (in Chinese))
[11] HT Gao, M Zhang, X Yang, et al. Effect of Na2SiO3solution concentration of micro-arc oxidation process on lap-shear strength of adhesive-bonded magnesium alloys[J]. Applied Surface Science, 2014,314:447-452
[12] Si Larbi A., Ferrier E., Jurkiewiez B., Hamelin P. Static behaviour of steel concrete beam connected by bonding[J], Engineering structures, 2007, 29(6): 1034-1042.
[13] Meaud C, Jurkiewiez B, Ferrier E. S-c bonding connection an experimental study and non-linear finite element analysis[J]. International Journal of Adhesion & Adhesives, 2014, 54: 131-142.
[14] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8: 100-104.
[15] 刘超, 耿佳硕. 基于混合断裂模式的内聚力单元混凝土细观模型关键参数分析[J/OL]. 工程力学: 1-12[2024-01-24]. (Liu Chao, Geng Jiashuo. Critical parameter analysis of concrete cohesive element microscopic model upon mixed fracture modes[J/OL]. China Civil Engineering Journal, 1-12[2024-01-24] (in Chinese))
[16] 陈欣, 李杰. 混凝土微-细观随机断裂模型参数的识别与标定[J]. 土木工程学报, 2022, 55(11): 1-9. (Chen Xin, Li Jie. Parameter identification and calibration of the mesoscopic stochastic fracture model for concrete [J]. China Civil Engineering Journal, 2022, 55(11): 1-9. (in Chinese))
[17] Reeder J. R. 3D mixed-mode delamination fracture criteria-an experimentalist’s perspective[C]// Proceedings of the American Society for Composites, 21st Annual Technical Conference. Dearborn, Michigan, 2006. 

PDF(2718 KB)

176

Accesses

0

Citation

Detail

段落导航
相关文章

/