幂函数阻尼系统的振动特性分析

杨晓彤1, 申永军2, 张瑞良2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 91-97.

PDF(1944 KB)
PDF(1944 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (4) : 91-97.
振动理论与交叉研究

幂函数阻尼系统的振动特性分析

  • 杨晓彤1,申永军*2,张瑞良2
作者信息 +

Analysis of vibration characteristics of power function damping system

  • YANG Xiaotong1,SHEN Yongjun*2,ZHANG Ruiliang2
Author information +
文章历史 +

摘要

分析了含幂函数阻尼的单自由度系统在简谐激励下的受迫振动。通过平均法与等效线性化,推导了等效线性阻尼的表达式。研究发现,非线性阻尼的减振效果与其系数和指数密切相关。进一步得到了主系统振幅和相位的定常解,通过数值仿真验证了定常解的正确性。通过等效线性阻尼的变化曲线和幅频响应曲线,分析了影响非线性阻尼减振效果的因素。研究表明,阻尼比的增加会使共振峰值左移,提高了减振性能,但需在适当范围内控制阻尼比以实现最佳减振效果。此外,阻尼比较小时阻尼指数的增加能增强阻尼作用,但过大的阻尼比会导致非线性阻尼减振效果低于线性阻尼。本研究为结构减振设计及优化提供了重要依据和理论基础。

Abstract

The forced vibration of a single degree-of-freedom system with power function damping under simple harmonic excitation is analyzed. The expression of equivalent linear damping is derived by averaging method and equivalent linearization. It is found that the vibration reduction effect of nonlinear damping is closely related to its coefficient and exponent. The steady-state solution of the amplitude and phase of the main system is further obtained, and the correctness of the steady-state solution is verified by numerical simulation. The factors affecting the vibration reduction effect of nonlinear damping are analyzed by the changing curve of equivalent linear damping and the amplitude-frequency response curve. The study shows that the increase of damping ratio will shift the resonance peak to the left and improve the vibration reduction performance, but the damping ratio needs to be controlled within an appropriate range to achieve the best vibration reduction effect. In addition, when the damping ratio is small, the increase of damping index can enhance the damping effect, but too large damping ratio will cause the vibration reduction effect of nonlinear damping to be lower than that of linear damping. This results provide an important basis and theoretical foundation for structural vibration reduction design and optimization. 

关键词

幂函数阻尼 / 平均法 / 等效线性阻尼 / 振动控制

Key words

power function damping / average method / equivalent linear damping / vibration control

引用本文

导出引用
杨晓彤1, 申永军2, 张瑞良2. 幂函数阻尼系统的振动特性分析[J]. 振动与冲击, 2025, 44(4): 91-97
YANG Xiaotong1, SHEN Yongjun2, ZHANG Ruiliang2. Analysis of vibration characteristics of power function damping system[J]. Journal of Vibration and Shock, 2025, 44(4): 91-97

参考文献

[1] 陆泽琦,陈立群.非线性被动隔振的若干进展[J].力学学报,2017,49(03):550-564.
Lu Zeqi, Chen Liqun.Some recent progresses in nonlinear passive isolations of vibrations [J]. Theoretical and Applied Mechanics, 2017,49(03):550-564.
[2] 徐道临,张月英,周加喜,等.一种准零刚度隔振器的特性分析与实验研究[J].振动与冲击,2014,33(11):208-213.
Xu Daolin, Zhang Yueying, Zhou Jiaxi, et al. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness [J]. Journal of Vibration and Shock, 2014, 33(11): 208-213.
[3] 王超新,孙靖雅,张志谊,等.最优阻尼三参数隔振器设计和试验[J].机械工程学报,2015,51(15):90-96.
Wang Chaoxin, Sun Jingya, Zhang Zhiyi, et al. Design and Experiment of a Three-parameter Isolation System withOptimal Damping [J]. Journal of Mechanical Engineering,2015,51(15):90-96.
[4] Peng Z K, Lang Z Q, Zhao L, et al. The force transmissibility of MDOF structures with a non-linear viscous damping device [J]. International Journal of Non-Linear Mechanics, 2011, 46(10): 1305-1314.
[5] Peng Z K, Meng G, Lang Z Q, et al. Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method [J]. International Journal of Non-Linear Mechanics, 2012, 47(10): 1073-1080.
[6] Tang B, Brennan M J. A comparison of two nonlinear damping mechanisms in a vibration isolator [J]. Journal of Sound and Vibration, 2013, 332(3): 510-520.
[7] Xiao Z, Jing X, Cheng L. The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations [J]. Journal of Sound and Vibration, 2013, 332(5): 1335-1354.
[8]李锐,杜鹏飞,徐文韬,等.基于无量纲分析的磁流变隔振器阻尼参数优化[J].振动.测试与诊断,2014,34(01):39-45+188.
Li Rui, Du Pengfei, Xu Wentao, et al. On the Friction-Induced Squeal of Pin-on-Disc System [J]. Journal of Vibration,Measurement & Diagnosis,2014,34(01):39-45+188.
[9]张春辉, 赵建华, 汪玉, 等. 平方阻尼在冲击隔离中的特性与作用研究 [J]. 船舶力学, 2014, 18(7): 834-840.
Zhang Chunhui, Zhao Jianhua, Wang Yu, et al. Effect of quadratic damping in a shock isolation system [J]. Journal of Ship Mechanics, 2014, 18(7): 834-840.
[10]王志豪,潘侠圭,武传宇,等.杠杆式隔振器的理论模型及隔振特性研究[J].振动与冲击,2022,41(14):145-150+225. 
Wang Zhihao, Pan Xiagui, Wu Chuanyu, et al. Theoretical model and vibration isolation characteristics of a lever-type vibration isolator [J]. Journal of Vibration and Shock, 2022,41(14):145-150+225.
[11]张运法, 孔宪仁. 具有组合非线性阻尼的非线性能量阱振动抑制响应分析[J]. 力学学报, 2023, 55(4): 972-981.
Zhang Yunfa, Kong Xianren. Analysis on vibration suppression response of nonlinear energysink with combined nonlinear damping [J]. Theoretical and Applied Mechanics, 2023, 55(4): 972-981.
[12]刘海超,闫明,孙自强,等.几何非线性黏性阻尼隔振系统的传递率特性[J].振动.测试与诊断,2023,43(06):1191-1197+1248.
Liu Haichao, Yan Ming, Sun Ziqiang, et al. Transmissibility Characteristics of Geometrically Nonlinear Viscous Damping Vibration Isolation System [J]. Journal of Vibration,Measurement & Diagnosis, 2023, 43(06): 1191-1197+1248.
[13] Umair M, Hou Z. Displacement and Force Transmissibility of a High-Static-Low-Dynamic-Stiffness Isolator with Geometric Nonlinear Damping [J]. Journal of Vibration Engineering & Technologies, 2024: 1-8.
[14] Li Y, Tan P, Li S. Improving the control performance of optimal tuned inerter damper via nonlinear eddy current damping[J]. Nonlinear Dynamics, 2024, 112(1): 331-352.
[15] 陈予恕. 非线性振动[M]. 天津:天津科学技术出版社, 1983.
Chen Yushu. Nonlinear vibration [M]. Tianjin: Tianjin Science and Technology Press, 1983.
[16] 褚亦清, 李翠英. 非线性振动分析[M]. 北京:北京理工大学出版社, 1996.
Chu Yiqing, Li Cuiying. Analysis of Nonlinear Vibrations [M]. Beijing: Beijing Institute Of Technology Press, 1996.
[17] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析* [J]. 物理学报, 2012, 61(11): 158-163.
Shen Yongjun, Yang Shaopu, Xing Haijun. Dynamical analysis of linear single degree-of-freedomoscillator with fractional-order derivative* [J]. ActaPhysica Sinica, 2012, 61(11): 158-163.
[18] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析 (Ⅱ)[J]. 物理学报, 2012, 61(15): 55-63.
Shen Yongjun, Yang Shaopu, Xing Haijun. Dynamical analysis of linear SDOF oscillator with fractional-order derivative(Ⅱ) [J]. ActaPhysica Sinica, 2012, 61(15): 55-63.
[19] 韦鹏, 申永军, 杨绍普. 分数阶 van der Pol 振子的超谐共振[J]. 物理学报, 2014, 63(1): 47-58.
Wei Peng, Shen Yongjun, and Yang Shaopu. Super-harmonic resonance of fractional-order van der Pol oscillator [J]. ActaPhysica Sinica, 2014, 63(1): 47-58.
[20]唐建花,李向红,王敏,等.广义分数阶van der Pol-Duffing振子的动力学响应与隔振效果研究[J].振动与冲击,2022,41(01):10-18.
Tang Jianhua, Li Xianghong, Wang Min, et al. Dynamic response and vibration isolation effect of generalized fractional-order van der Pol-Duffing oscillator [J]. Journal of Vibration and Shock, 2022,41(01):10-18.
[21]  DEN HARTOG J P . 机械振动学[M]. 谈峯译. 北京: 科学出版社,1961.
J.P., Deng Hartog. Mechanical Vibration [M]. Tanfeng Translation. Beijing: Science Press, 1961.
[22] Bandstra, J. P. Comparison of Equivalent Viscous Damping and Nonlinear Damping in Discrete and Continuous Vibrating Systems [J]. Journal of Vibration & Acoustics, 1983, 105(3):382-392. 

PDF(1944 KB)

Accesses

Citation

Detail

段落导航
相关文章

/