基于花斑翠鸟优化径向基移动最小二乘chirplet变换的结构瞬时频率识别

袁平平1, 丁雅鑫2, 羊晨1, 任伟新3, 方旺2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 12-17.

PDF(1445 KB)
PDF(1445 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 12-17.
振动与机械科学

基于花斑翠鸟优化径向基移动最小二乘chirplet变换的结构瞬时频率识别

  • 袁平平1,丁雅鑫2,羊晨1,任伟新*3 ,方旺2
作者信息 +

Structural instantaneous frequency identification based on pied kingfisher optimizer radial basis function moving least squares chirplet transform

  • YUAN Pingping1, DING Yaxin2, YANG Chen1, REN Weixin*3, FANG Wang2
Author information +
文章历史 +

摘要

为提升chirplet变换(chirplet transform, CT)估算瞬时频率的精度,在CT基础上结合花斑翠鸟优化(pied kingfisher optimizer, PKO)和径向基移动最小二乘(radial basis function moving least squares, RBFMLS)算法提出了一种识别结构瞬时频率的新方法。该方法采用正定紧支径向基函数作为移动最小二乘近似的权函数,对CT的能量脊线进行估算,同时应用PKO对RBFMLS节点支撑半径和CT窗函数宽度进行优化。通过一组解析信号数值算例和一个时变拉索试验验证了所提方法的有效性。研究结果表明,该方法能有效改善信号分析的能量聚集性,提高瞬时频率的识别精度。

Abstract

To improve the accuracy of estimating instantaneous frequency with chirplet transform (CT), a new method for identifying structural instantaneous frequency was proposed based on CT combined with the pied kingfisher optimizer (PKO) and the radial basis function moving least squares (RBFMLS) algorithms.This method could use a positive definite tightly supported radial basis function as the weight function of moving least squares approximation to estimate the energy ridge of CT, and optimize RBFMLS node support radius and CT window function width using PKO.The effectiveness of the proposed method was verified through a case of numerical analytical signal and a time-varying cable test.The study results showed that the proposed method can effectively improve the energy aggregation of signal analysis and the identification accuracy of instantaneous frequency.

关键词

花斑翠鸟优化(PKO) / 径向基移动最小二乘(RBFMLS) / chirplet变换(CT) / 瞬时频率

Key words

pied kingfisher optimizer (PKO) / radial basis function moving least squares (RBFMLS) / chirplet transform (CT) / instantaneous frequency

引用本文

导出引用
袁平平1, 丁雅鑫2, 羊晨1, 任伟新3, 方旺2. 基于花斑翠鸟优化径向基移动最小二乘chirplet变换的结构瞬时频率识别[J]. 振动与冲击, 2025, 44(5): 12-17
YUAN Pingping1, DING Yaxin2, YANG Chen1, REN Weixin3, FANG Wang2. Structural instantaneous frequency identification based on pied kingfisher optimizer radial basis function moving least squares chirplet transform[J]. Journal of Vibration and Shock, 2025, 44(5): 12-17

参考文献

[1]刘景良, 任伟新, 王佐才, 等.基于同步挤压小波变换的结构瞬时频率识别[J].振动与冲击, 2013, 32(18): 37-42.
LIU Jingliang, REN Weixin, WANG Zuocai, et al.Instantaneous frequency identification based on synchrosqueezing wavelet transform[J].Journal of Vibration and Shock, 2013, 32(18): 37-42.
[2]王超, 任伟新, 黄天立.基于复小波变换的结构瞬时频率识别[J].振动工程学报, 2009, 22(5): 492-496.
WANG Chao, REN Weixin, HUANG Tianli.Instantaneous frequency identification of a structure based on complex wavelet transform[J].Journal of Vibration Engineering, 2009, 22(5): 492-496.
[3]袁平平, 程雪莉, 王航航, 等.基于改进多重同步挤压广义S变换的结构瞬时频率识别研究[J].振动与冲击, 2022, 41(8): 193-198.
YUAN Pingping, CHENG Xueli, WANG Hanghang, et al.A study on structural instantaneous frequency identification based on an improved multi-synchrosqueezing generalized S-transform[J].Journal of Vibration and Shock, 2022, 41(8): 193-198.
[4]WANG Z C, REN W X, CHEN G.Time-frequency analysis and applications in time-varying/nonlinear structural systems: a state-of-the-art review[J].Advances in Structural Engineering, 2018, 21(10): 1562-1584.
[5]YUAN P P, ZHANG J, FENG J Q, et al.An improved time-frequency analysis method for structural instantaneous frequency identification based on generalized S-transform and synchroextracting transform[J].Engineering Structures, 2022, 252: 113657.
[6]封雷, 卫炜, 刘曦, 等.基于HHT的导弹发射冲击时频谱分析[J].振动、测试与诊断, 2020, 40(1): 148-154.
FENG Lei, WEI Wei, LIU Xi, et al.Time frequency spectrum analysis of shock signals generated by missile launching based on Hilbert-Huang transform[J].Journal of Vibration, Measurement & Diagnosis, 2020, 40(1): 148-154.
[7]续秀忠, 张志谊, 华宏星, 等.应用时频分析方法辨识时变系统的模态参数[J].振动工程学报, 2003, 16(3): 104-108.
XU Xiuzhong, ZHANG Zhiyi, HUA Hongxing, et al.Identification of modal parameters of time-varying system using time-frequency analysis method[J].Journal of Vibration Engineering, 2003,16(3): 104-108.
[8]YANG Y, PENG Z K, DONG X J, et al.General parameterized time-frequency transform[J].IEEE Transactions on Signal Processing, 2014, 62(11): 2751-2764.
[9]YANG Y, PENG Z K, MENG G, et al.Spline-kernelled chirplet transform for the analysis of signals with time-varying frequency and its application[J].IEEE Transactions on Industrial Electronics, 2011, 59(3): 1612-1621.
[10]YANG Y, ZHANG W M, PENG Z K, et al.Multicomponent signal analysis based on polynomial chirplet transform[J].IEEE Transactions on Industrial Electronics, 2013, 60(9): 3948-3956.
[11]YU G, ZHOU Y Q.General linear chirplet transform[J].Mechanical Systems and Signal Processing, 2016, 70: 958-973.
[12]GUAN Y P, LIANG M, NECSULESCU D S.Velocity synchronous linear chirplet transform[J].IEEE Transactions on Industrial Electronics, 2019, 66(8): 6270-6280.
[13]LI M F, WANG T Y, CHU F L, et al.Scaling-basis chirplet transform[J].IEEE Transactions on Industrial Electronics, 2020, 68(9): 8777-8788.
[14]ZHU X X, ZHANG Z S, GAO J H, et al.Synchroextracting chirplet transform for accurate IF estimate and perfect signal reconstruction[J].Digital Signal Processing, 2019, 93: 172-186.
[15]YUAN P P, ZHAO Z J, LIU Y, et al.A combined spline chirplet transform and local maximum synchrosqueezing technique for structural instantaneous frequency identification[J].Smart Structures and Systems, 2024, 33(3): 201-215.
[16]孙婷.基于移动最小二乘近似权函数的选取及其应用[D].苏州: 苏州大学, 2010.
[17]王红平, 史明.基于改进移动最小二乘法的数据拟合[J].组合机床与自动化加工技术, 2021(3): 9-13.
WANG Hongping, SHI Ming.Data fitting based on improved moving least square method[J].Modular Machine Tool & Automatic Manufacturing Technique, 2021(3): 9-13.
[18]BOUAOUDA A, HASHIM F A, SAYOUTI Y, et al.Pied kingfisher optimizer: a new bio-inspired algorithm for solving numerical optimization and industrial engineering problems[J].Neural Computing and Applications, 2024, 36: 15455-15513.
[19]刘景良, 郑锦仰, 林友勤, 等.变分模态分解和同步挤压小波变换识别时变结构瞬时频率[J].振动与冲击, 2018, 37(20): 24-31.
LIU Jingliang, ZHENG Jinyang, LIN Youqin, et al.Instantaneous frequency identification of time-varying structures using variational mode decomposition and synchrosqueezing wavelet transform[J].Journal of Vibration and Shock, 2018, 37(20): 24-31.
[20]WANG C, REN W X, WANG Z C, et al.Instantaneous frequency identification of time-varying structures by continuous wavelet transform[J].Engineering Structures, 2013, 52: 17-25.

PDF(1445 KB)

Accesses

Citation

Detail

段落导航
相关文章

/