浅水调谐液体阻尼器(tuned liquid damper, TLD)在水平简谐激励作用下,内部流体自由液面运动幅值响应曲线在跳跃频率点会出现幅值骤降现象。本文基于三阶非线性幅值时域方程,通过量纲分析忽略高阶项,获得考虑粘性阻尼影响下的跳跃频率近似计算公式。为了验证公式的有效性,通过六自由度运动模拟器以及浅水TLD水箱进行系列实验,将所提公式计算结果与现有公式计算结果、实验测量结果进行对比分析,发现新公式计算结果整体上与实验测量结果更加吻合,优于现有计算公式。新公式综合考虑水深、特征长度、激励幅值以及粘性影响,在阻尼影响较大的领域会具有更好的适用性。
Abstract
Under the action of horizontal harmonic excitation, the amplitude response curve of the internal fluid free surface motion of the shallow-water tuned liquid damper (TLD) will show a sudden drop at the jump frequency point. In this paper, based on the third-order nonlinear amplitude time domain equation, the approximate calculation formula of jump frequency considering the influence of viscous damping is obtained by ignoring the high-order term through dimensional analysis. In order to verify the validity of the formula, a series of experiments were carried out through a six-degree-of-freedom motion simulator and a shallow-water TLD tank. The calculation results of the proposed formula were compared with the calculation results of the existing formula and the experimental measurement results. It is found that the new formula is more consistent with the experimental measurement results as a whole, which is better than the existing calculation formula. At the same time, the new formula comprehensively considers the influence of water depth, characteristic length, excitation amplitude and viscosity, and has better applicability in the field with greater damping influence.
关键词
浅水调谐液体阻尼器(TLD) /
跳跃频率 /
近似计算公式
{{custom_keyword}} /
Key words
shallow-water tuned liquid damper (TLD) /
jump frequency /
approximate calculation formula
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Antuono M, Lugni C. Global force and moment in rectangular tanks through a modal method for wave sloshing[J]. Journal of Fluids and Structures, 2018, 771-18.
[2] Ardakani A H, Bridges T. Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in two dimensions[J]. European Journal of Mechanics / B Fluids, 2011, 3130-43.
[3] Bouscasse B, Colagrossi A, Souto-Iglesias A, et al. Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. I. Theoretical formulation and numerical investigation[J]. Physics of fluids, 2014, 26(3): 033103-1-033103-21.
[4] Wei Zhi-Jun, Faltinsen, et al. Sloshing-induced slamming in screen-equipped rectangular tanks in shallow-water conditions[J]. Physics of fluids, 2015, 27(3): 032104
[5] Liu H, Zhou G J. Lattice Boltzmann approach to simulating a wetting–drying front in shallow flows[J]. Journal of Fluid Mechanics, 2014, 74332-59.
[6] Tahmasebi K M, ,Shamsoddini R, Abolpour B. Performances of Different Turbulence Models for Simulating Shallow Water Sloshing in Rectangular Tank[J]. Journal of Marine Science and Application, 2020, 19(3): 1-7.
[7] 张茴栋,李琪,史宏达. 新型DBA隔板结构下LNG储罐液体晃荡的数值研究[J]. 船舶力学, 2023, 27(10): 1507-1516.
Zhang Hui-dong, Li Qi, Shi Hong-da. Numerical study of liquid sloshing in LNG storage tanks with a new DBA baffle structure[J]. Ship mechanics, 2023, 27(10): 1507-1516.
[8] 石留斌. 非规则受迫激励下浅水液舱晃荡数值模拟研究[D]. 武汉理工大学, 2022.
Shi Liu-bin. Numerical simulation of sloshing in shallow water tank under irregular forced excitation[D]. Wuhan University of Technology, 2022.
[9] Tait M, Damatty E A, Isyumov N. Testing of tuned liquid damper with screens and development of equivalent TMD model[J]. Wind and Structures, 2004, 7(4): 215-234.
[10] 张友林,李华祥,曹广启. 浅水调谐液体阻尼器与风电机组塔筒相互作用的CFD-FEM耦合数值分析[J]. 风能, 2020(11): 82-87.
Zhang You-lin, Li Hua-xiang, Cao Guang-qi. CFD-FEM coupled numerical analysis of the interaction between shallow water tuned liquid damper and wind turbine tower[J]. Wind energy, 2020(11): 82-87.
[11] 董悦,唐贞云,刘豪.简谐激励下TLD对高层结构减震性能[J].哈尔滨工业大学学报,2022,54(04):92-100.
Dong Yue, Tang Zhen-yun, Liu Hao. Damping performance of TLD on high-rise structures under harmonic excitation[J]. Journal of Harbin Institute of Technology, 2022,54(04): 92-100.
[12] 金波,郭荣,方棋洪.考虑流固耦合作用屋顶游泳池减振效应研究[J].工程力学,2023,40(08):138-148.
Jin Bo, Guo Rong, Fang Qi-hong. Study on the vibration reduction effect of roof swimming pool considering fluid-solid coupling[J]. Engineering mechanics, 2023,40(08): 138-148.
[13] 窦朋,王志东,凌宏杰,等.调谐液体阻尼器对多层多模态平台结构的运动控制研究[J].振动与冲击,2023,42(14):30-39.
Dou Peng, Wang Zhi-dong, Ling Hong-jie, et al. Motion control of a multi-layer multi-modal platform structure with a tuned liquid damper[J]. Journal of Vibration and Shock, 2023,42(14): 30-39.
[14] 张蓝方,谢壮宁,周子杰,等.带内置可旋转隔板的调谐液体阻尼器减振性能试验研究[J].振动与冲击,2023,42(19):64-69
Zhang Lan-fang, Xie Zhuang-ning, Zhou Zi-jie, et al. Test study on vibration reduction performance of tuned liquid damper with built-in rotatable baffles[J]. Journal of Vibration and Shock, 2023, 42 (19): 64-69
[15] 巫振弘.调谐液体阻尼器试验研究与失调效应分析及控制[D].中国建筑科学研究院,2024.
Wu Zhen-hong. Experimental study on tuned liquid damper and analysis and control of misalignment effect[D]. China Academy of Building Research, 2024.
[16] Faltinsen O M, Timokha A N. Sloshing[M]. Cambridge University Press: Cambridge, 2009.
[17] Bauer H F. Nonlinear Propellant Sloshing in a Rectangular Container of Infinite Length[C]// W.A. Shaw Developments in Theoretical and Applied Mech., vol. 3. New York: Permagan Press, 1967. 725–759.
[18] Yu, Jin Kyu. Nonlinear characteristics of tuned liquid dampers[D]. University of Washington, 1997.
[19] Gurusamy S, Kumar D. Experimental study on nonlinear sloshing frequency in shallow water tanks under the effects of excitation amplitude and dispersion parameter[J]. Ocean Engineering, 2020, 213, 107761.
[20] Hill D F. Transient and steady-state amplitudes of forced waves in rectangular basins[J]. Physics of fluids, 2003, 15(6): 1576-1587.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}